Skip to main content
Log in

Dissecting the initiation of female meiosis in the mouse at single-cell resolution

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Meiosis is one of the most finely orchestrated events during gametogenesis with distinct developmental patterns in males and females. However, the molecular mechanisms involved in this process remain not well known. Here, we report detailed transcriptome analyses of cell populations present in the mouse female gonadal ridges (E11.5) and the embryonic ovaries from E12.5 to E14.5 using single-cell RNA sequencing (scRNA seq). These periods correspond with the initiation and progression of meiosis throughout the first stage of prophase I. We identified 13 transcriptionally distinct cell populations and 7 transcriptionally distinct germ cell subclusters that correspond to mitotic (3 clusters) and meiotic (4 clusters) germ cells. By analysing cluster-specific gene expression profiles, we found four cell clusters correspond to different cell stages en route to meiosis and characterized their detailed transcriptome dynamics. Our scRNA seq analysis here represents a new important resource for deciphering the molecular pathways driving female meiosis initiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

PGCs:

Primordial germ cells

RA:

Retinoic acid

BMP:

Bone morphogenetic protein

scRNA:

Single-cell RNA sequencing

tSNE:

t-Distributed Stochastic Neighbor Embedding

DEGs:

Differentially expressed genes

GO:

Gene ontology

PCA:

Principal component analysis

GRNs:

Gene regulatory networks

SCENIC:

Single-cell regulatory network inference and clustering

ES:

Embryonic stem

GEMs:

Gel-bead in emulsions

References

  1. Cinalli RM, Rangan P, Lehmann R (2008) Germ cells are forever. Cell 132(4):559–562. https://doi.org/10.1016/j.cell.2008.02.003

    Article  CAS  PubMed  Google Scholar 

  2. De Felici M (2016) The formation and migration of primordial germ cells in mouse and man. Results Probl Cell Differ 58:23–46. https://doi.org/10.1007/978-3-319-31973-5_2

    Article  CAS  PubMed  Google Scholar 

  3. Grive KJ, Freiman RN (2015) The developmental origins of the mammalian ovarian reserve. Development 142(15):2554–2563. https://doi.org/10.1242/dev.125211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang C, Zhou B, Xia G (2017) Erratum to: Mechanisms controlling germline cyst breakdown and primordial follicle formation. Cell Mol Life Sci CMLS 74(14):2567. https://doi.org/10.1007/s00018-017-2499-8

    Article  CAS  PubMed  Google Scholar 

  5. Handel MA, Schimenti JC (2010) Genetics of mammalian meiosis: regulation, dynamics and impact on fertility. Nat Rev Genet 11(2):124–136. https://doi.org/10.1038/nrg2723

    Article  CAS  PubMed  Google Scholar 

  6. Ge W, Chen C, De Felici M, Shen W (2015) In vitro differentiation of germ cells from stem cells: a comparison between primordial germ cells and in vitro derived primordial germ cell-like cells. Cell Death Dis 6:e1906. https://doi.org/10.1038/cddis.2015.265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tucker EJ, Grover SR, Bachelot A, Touraine P, Sinclair AH (2016) Premature ovarian insufficiency: new perspectives on genetic cause and phenotypic spectrum. Endocr Rev 37(6):609–635. https://doi.org/10.1210/er.2016-1047

    Article  PubMed  Google Scholar 

  8. Saitou M, Miyauchi H (2016) Gametogenesis from pluripotent stem cells. Cell Stem Cell 18(6):721–735. https://doi.org/10.1016/j.stem.2016.05.001

    Article  CAS  PubMed  Google Scholar 

  9. Yamashiro C, Sasaki K, Yabuta Y, Kojima Y, Nakamura T, Okamoto I, Yokobayashi S, Murase Y, Ishikura Y, Shirane K, Sasaki H, Yamamoto T, Saitou M (2018) Generation of human oogonia from induced pluripotent stem cells in vitro. Science 362(6412):356–360. https://doi.org/10.1126/science.aat1674

    Article  CAS  PubMed  Google Scholar 

  10. Handel MA, Eppig JJ, Schimenti JC (2014) Applying “gold standards” to in vitro-derived germ cells. Cell 157(6):1257–1261. https://doi.org/10.1016/j.cell.2014.05.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sun YC, Cheng SF, Sun R, Zhao Y, Shen W (2014) Reconstitution of gametogenesis in vitro: meiosis is the biggest obstacle. J Genet Genom 41(3):87–95. https://doi.org/10.1016/j.jgg.2013.12.008

    Article  CAS  Google Scholar 

  12. Tedesco M, Farini D, De Felici M (2011) Impaired meiotic competence in putative primordial germ cells produced from mouse embryonic stem cells. Int J Dev Biol 55(2):215–222. https://doi.org/10.1387/ijdb.103108mt

    Article  CAS  PubMed  Google Scholar 

  13. Hikabe O, Hamazaki N, Nagamatsu G, Obata Y, Hirao Y, Hamada N, Shimamoto S, Imamura T, Nakashima K, Saitou M, Hayashi K (2016) Reconstitution in vitro of the entire cycle of the mouse female germ line. Nature 539(7628):299–303. https://doi.org/10.1038/nature20104

    Article  CAS  PubMed  Google Scholar 

  14. Zhou Q, Wang M, Yuan Y, Wang X, Fu R, Wan H, Xie M, Liu M, Guo X, Zheng Y, Feng G, Shi Q, Zhao XY, Sha J, Zhou Q (2016) Complete meiosis from embryonic stem cell-derived germ cells in vitro. Cell Stem Cell 18(3):330–340. https://doi.org/10.1016/j.stem.2016.01.017

    Article  CAS  PubMed  Google Scholar 

  15. Griswold MD, Hogarth CA, Bowles J, Koopman P (2012) Initiating meiosis: the case for retinoic acid. Biol Reprod 86(2):35. https://doi.org/10.1095/biolreprod.111.096610

    Article  CAS  PubMed  Google Scholar 

  16. Bowles J, Knight D, Smith C, Wilhelm D, Richman J, Mamiya S, Yashiro K, Chawengsaksophak K, Wilson MJ, Rossant J, Hamada H, Koopman P (2006) Retinoid signaling determines germ cell fate in mice. Science 312(5773):596–600. https://doi.org/10.1126/science.1125691

    Article  CAS  PubMed  Google Scholar 

  17. Farini D, Scaldaferri ML, Iona S, La Sala G, De Felici M (2005) Growth factors sustain primordial germ cell survival, proliferation and entering into meiosis in the absence of somatic cells. Dev Biol 285(1):49–56. https://doi.org/10.1016/j.ydbio.2005.06.036

    Article  CAS  PubMed  Google Scholar 

  18. Miyauchi H, Ohta H, Nagaoka S, Nakaki F, Sasaki K, Hayashi K, Yabuta Y, Nakamura T, Yamamoto T, Saitou M (2017) Bone morphogenetic protein and retinoic acid synergistically specify female germ-cell fate in mice. EMBO J 36(21):3100–3119. https://doi.org/10.15252/embj.201796875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Small CL, Shima JE, Uzumcu M, Skinner MK, Griswold MD (2005) Profiling gene expression during the differentiation and development of the murine embryonic gonad. Biol Reprod 72(2):492–501. https://doi.org/10.1095/biolreprod.104.033696

    Article  CAS  PubMed  Google Scholar 

  20. Houmard B, Small C, Yang L, Naluai-Cecchini T, Cheng E, Hassold T, Griswold M (2009) Global gene expression in the human fetal testis and ovary. Biol Reprod 81(2):438–443. https://doi.org/10.1095/biolreprod.108.075747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Molyneaux KA, Wang Y, Schaible K, Wylie C (2004) Transcriptional profiling identifies genes differentially expressed during and after migration in murine primordial germ cells. Gene Expr Patterns: GEP 4(2):167–181. https://doi.org/10.1016/j.modgep.2003.09.002

    Article  CAS  PubMed  Google Scholar 

  22. Morohaku K, Hirao Y, Obata Y (2017) Development of fertile mouse oocytes from mitotic germ cells in vitro. Nat Protoc 12(9):1817–1829. https://doi.org/10.1038/nprot.2017.069

    Article  CAS  PubMed  Google Scholar 

  23. Chuma S, Nakatsuji N (2001) Autonomous transition into meiosis of mouse fetal germ cells in vitro and its inhibition by gp130-mediated signaling. Dev Biol 229(2):468–479. https://doi.org/10.1006/dbio.2000.9989

    Article  CAS  PubMed  Google Scholar 

  24. Li Y, Zheng M, Lau YF (2014) The sex-determining factors SRY and SOX9 regulate similar target genes and promote testis cord formation during testicular differentiation. Cell Rep 8(3):723–733. https://doi.org/10.1016/j.celrep.2014.06.055

    Article  CAS  PubMed  Google Scholar 

  25. Feng YM, Liang GJ, Pan B, Qin XS, Zhang XF, Chen CL, Li L, Cheng SF, De Felici M, Shen W (2014) Notch pathway regulates female germ cell meiosis progression and early oogenesis events in fetal mouse. Cell Cycle 13(5):782–791. https://doi.org/10.4161/cc.27708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ge W, Ma HG, Cheng SF, Sun YC, Sun LL, Sun XF, Li L, Dyce P, Li J, Shi QH, Shen W (2015) Differentiation of early germ cells from human skin-derived stem cells without exogenous gene integration. Sci Rep 5:13822. https://doi.org/10.1038/srep13822

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ge W, Zhao Y, Lai FN, Liu JC, Sun YC, Wang JJ, Cheng SF, Zhang XF, Sun LL, Li L, Dyce PW, Shen W (2017) Cutaneous applied nano-ZnO reduce the ability of hair follicle stem cells to differentiate. Nanotoxicology 11(4):465–474. https://doi.org/10.1080/17435390.2017.1310947

    Article  CAS  PubMed  Google Scholar 

  28. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R (2018) Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 36(5):411–420. https://doi.org/10.1038/nbt.4096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, Lennon NJ, Livak KJ, Mikkelsen TS, Rinn JL (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32(4):381–386. https://doi.org/10.1038/nbt.2859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Qiu X, Hill A, Packer J, Lin D, Ma YA, Trapnell C (2017) Single-cell mRNA quantification and differential analysis with Census. Nat Methods 14(3):309–315. https://doi.org/10.1038/nmeth.4150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, Rambow F, Marine JC, Geurts P, Aerts J, van den Oord J, Atak ZK, Wouters J, Aerts S (2017) SCENIC: single-cell regulatory network inference and clustering. Nat Methods 14(11):1083–1086. https://doi.org/10.1038/nmeth.4463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Baltus AE, Menke DB, Hu YC, Goodheart ML, Carpenter AE, de Rooij DG, Page DC (2006) In germ cells of mouse embryonic ovaries, the decision to enter meiosis precedes premeiotic DNA replication. Nat Genet 38(12):1430–1434. https://doi.org/10.1038/ng1919

    Article  CAS  PubMed  Google Scholar 

  33. Koubova J, Menke DB, Zhou Q, Capel B, Griswold MD, Page DC (2006) Retinoic acid regulates sex-specific timing of meiotic initiation in mice. Proc Natl Acad Sci USA 103(8):2474–2479. https://doi.org/10.1073/pnas.0510813103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kocer A, Reichmann J, Best D, Adams IR (2009) Germ cell sex determination in mammals. Mol Hum Reprod 15(4):205–213. https://doi.org/10.1093/molehr/gap008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Haston KM, Tung JY, Reijo Pera RA (2009) Dazl functions in maintenance of pluripotency and genetic and epigenetic programs of differentiation in mouse primordial germ cells in vivo and in vitro. PLoS One 4(5):e5654. https://doi.org/10.1371/journal.pone.0005654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Woods DC, Tilly JL (2013) Isolation, characterization and propagation of mitotically active germ cells from adult mouse and human ovaries. Nat Protoc 8(5):966–988. https://doi.org/10.1038/nprot.2013.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McLaren A (2000) Germ and somatic cell lineages in the developing gonad. Mol Cell Endocrinol 163(1–2):3–9. https://doi.org/10.1016/s0303-7207(99)00234-8

    Article  CAS  PubMed  Google Scholar 

  38. Jameson SA, Natarajan A, Cool J, DeFalco T, Maatouk DM, Mork L, Munger SC, Capel B (2012) Temporal transcriptional profiling of somatic and germ cells reveals biased lineage priming of sexual fate in the fetal mouse gonad. PLoS Genet 8(3):e1002575. https://doi.org/10.1371/journal.pgen.1002575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mazaud S, Oreal E, Guigon CJ, Carre-Eusebe D, Magre S (2002) Lhx9 expression during gonadal morphogenesis as related to the state of cell differentiation. Gene Expr Patterns GEP 2(3–4):373–377. https://doi.org/10.1016/s1567-133x(02)00050-9

    Article  CAS  PubMed  Google Scholar 

  40. Kanamori-Katayama M, Kaiho A, Ishizu Y, Okamura-Oho Y, Hino O, Abe M, Kishimoto T, Sekihara H, Nakamura Y, Suzuki H, Forrest AR, Hayashizaki Y (2011) LRRN4 and UPK3B are markers of primary mesothelial cells. PLoS One 6(10):e25391. https://doi.org/10.1371/journal.pone.0025391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Piprek RP, Kolasa M, Podkowa D, Kloc M, Kubiak JZ (2018) Transcriptional profiling validates involvement of extracellular matrix and proteinases genes in mouse gonad development. Mech Dev 149:9–19. https://doi.org/10.1016/j.mod.2017.11.001

    Article  CAS  PubMed  Google Scholar 

  42. Brennan J, Karl J, Capel B (2002) Divergent vascular mechanisms downstream of Sry establish the arterial system in the XY gonad. Dev Biol 244(2):418–428. https://doi.org/10.1006/dbio.2002.0578

    Article  CAS  PubMed  Google Scholar 

  43. Jeays-Ward K, Hoyle C, Brennan J, Dandonneau M, Alldus G, Capel B, Swain A (2003) Endothelial and steroidogenic cell migration are regulated by WNT4 in the developing mammalian gonad. Development 130(16):3663–3670. https://doi.org/10.1242/dev.00591

    Article  CAS  PubMed  Google Scholar 

  44. Lummertz da Rocha E, Rowe RG, Lundin V, Malleshaiah M, Jha DK, Rambo CR, Li H, North TE, Collins JJ, Daley GQ (2018) Reconstruction of complex single-cell trajectories using CellRouter. Nat Commun 9(1):892. https://doi.org/10.1038/s41467-018-03214-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Harigae H, Nakajima O, Suwabe N, Yokoyama H, Furuyama K, Sasaki T, Kaku M, Yamamoto M, Sassa S (2003) Aberrant iron accumulation and oxidized status of erythroid-specific delta-aminolevulinate synthase (ALAS2)-deficient definitive erythroblasts. Blood 101(3):1188–1193. https://doi.org/10.1182/blood-2002-01-0309

    Article  CAS  PubMed  Google Scholar 

  46. de Jong J, Stoop H, Gillis AJ, van Gurp RJ, van de Geijn GJ, Boer M, Hersmus R, Saunders PT, Anderson RA, Oosterhuis JW, Looijenga LH (2008) Differential expression of SOX17 and SOX2 in germ cells and stem cells has biological and clinical implications. J Pathol 215(1):21–30. https://doi.org/10.1002/path.2332

    Article  CAS  PubMed  Google Scholar 

  47. Ohta H, Kurimoto K, Okamoto I, Nakamura T, Yabuta Y, Miyauchi H, Yamamoto T, Okuno Y, Hagiwara M, Shirane K, Sasaki H, Saitou M (2017) In vitro expansion of mouse primordial germ cell-like cells recapitulates an epigenetic blank slate. EMBO J 36(13):1888–1907. https://doi.org/10.15252/embj.201695862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Malki S, van der Heijden GW, O’Donnell KA, Martin SL, Bortvin A (2014) A role for retrotransposon LINE-1 in fetal oocyte attrition in mice. Dev Cell 29(5):521–533. https://doi.org/10.1016/j.devcel.2014.04.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Morohaku K, Tanimoto R, Sasaki K, Kawahara-Miki R, Kono T, Hayashi K, Hirao Y, Obata Y (2016) Complete in vitro generation of fertile oocytes from mouse primordial germ cells. Proc Natl Acad Sci USA 113(32):9021–9026. https://doi.org/10.1073/pnas.1603817113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Watanabe Y, Nurse P (1999) Cohesin Rec8 is required for reductional chromosome segregation at meiosis. Nature 400(6743):461–464. https://doi.org/10.1038/22774

    Article  CAS  PubMed  Google Scholar 

  51. De Felici M, Farini D (2012) The control of cell cycle in mouse primordial germ cells: old and new players. Curr Pharm Des 18(3):233–244. https://doi.org/10.2174/138161212799040448

    Article  PubMed  Google Scholar 

  52. Xu H, Beasley MD, Warren WD, van der Horst GT, McKay MJ (2005) Absence of mouse REC8 cohesin promotes synapsis of sister chromatids in meiosis. Dev Cell 8(6):949–961. https://doi.org/10.1016/j.devcel.2005.03.018

    Article  CAS  PubMed  Google Scholar 

  53. Zhou H, Grubisic I, Zheng K, He Y, Wang PJ, Kaplan T, Tjian R (2013) Taf7l cooperates with Trf2 to regulate spermiogenesis. Proc Natl Acad Sci USA 110(42):16886–16891. https://doi.org/10.1073/pnas.1317034110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yang F, Eckardt S, Leu NA, McLaughlin KJ, Wang PJ (2008) Mouse TEX15 is essential for DNA double-strand break repair and chromosomal synapsis during male meiosis. J Cell Biol 180(4):673–679. https://doi.org/10.1083/jcb.200709057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tsukamoto H, Yoshitake H, Mori M, Yanagida M, Takamori K, Ogawa H, Takizawa T, Araki Y (2006) Testicular proteins associated with the germ cell-marker, TEX101: involvement of cellubrevin in TEX101-trafficking to the cell surface during spermatogenesis. Biochem Biophys Res Commun 345(1):229–238. https://doi.org/10.1016/j.bbrc.2006.04.070

    Article  CAS  PubMed  Google Scholar 

  56. Baudat F, Buard J, Grey C, Fledel-Alon A, Ober C, Przeworski M, Coop G, de Massy B (2010) PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science 327(5967):836–840. https://doi.org/10.1126/science.1183439

    Article  CAS  PubMed  Google Scholar 

  57. Zhou J, Leu NA, Eckardt S, McLaughlin KJ, Wang PJ (2014) STK31/TDRD8, a germ cell-specific factor, is dispensable for reproduction in mice. PLoS One 9(2):e89471. https://doi.org/10.1371/journal.pone.0089471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Akagi T, Kuure S, Uranishi K, Koide H, Costantini F, Yokota T (2015) ETS-related transcription factors ETV4 and ETV5 are involved in proliferation and induction of differentiation-associated genes in embryonic stem (ES) cells. J Biol Chem 290(37):22460–22473. https://doi.org/10.1074/jbc.M115.675595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Atienza JM, Roth RB, Rosette C, Smylie KJ, Kammerer S, Rehbock J, Ekblom J, Denissenko MF (2005) Suppression of RAD21 gene expression decreases cell growth and enhances cytotoxicity of etoposide and bleomycin in human breast cancer cells. Mol Cancer Ther 4(3):361–368. https://doi.org/10.1158/1535-7163.MCT-04-0241

    Article  CAS  PubMed  Google Scholar 

  60. Zhang D, Wang Y, Lu P, Wang P, Yuan X, Yan J, Cai C, Chang CP, Zheng D, Wu B, Zhou B (2017) REST regulates the cell cycle for cardiac development and regeneration. Nat Commun 8(1):1979. https://doi.org/10.1038/s41467-017-02210-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yamaguchi S, Kimura H, Tada M, Nakatsuji N, Tada T (2005) Nanog expression in mouse germ cell development. Gene Expr patterns GEP 5(5):639–646. https://doi.org/10.1016/j.modgep.2005.03.001

    Article  CAS  PubMed  Google Scholar 

  62. Loenarz C, Ge W, Coleman ML, Rose NR, Cooper CD, Klose RJ, Ratcliffe PJ, Schofield CJ (2010) PHF8, a gene associated with cleft lip/palate and mental retardation, encodes for an Nepsilon-dimethyl lysine demethylase. Hum Mol Genet 19(2):217–222. https://doi.org/10.1093/hmg/ddp480

    Article  CAS  PubMed  Google Scholar 

  63. Metcalf CE, Wassarman DA (2007) Nucleolar colocalization of TAF1 and testis-specific TAFs during Drosophila spermatogenesis. Dev Dyn 236(10):2836–2843. https://doi.org/10.1002/dvdy.21294

    Article  CAS  PubMed  Google Scholar 

  64. Zabludoff SD, Wright WW, Harshman K, Wold BJ (1996) BRCA1 mRNA is expressed highly during meiosis and spermiogenesis but not during mitosis of male germ cells. Oncogene 13(3):649–653

    CAS  PubMed  Google Scholar 

  65. Wilkinson DA, Neale GA, Mao S, Naeve CW, Goorha RM (1997) Elf-2, a rhombotin-2 binding ets transcription factor: discovery and potential role in T cell leukemia. Leukemia 11(1):86–96. https://doi.org/10.1038/sj.leu.2400516

    Article  CAS  PubMed  Google Scholar 

  66. Varaljai R, Islam AB, Beshiri ML, Rehman J, Lopez-Bigas N, Benevolenskaya EV (2015) Increased mitochondrial function downstream from KDM5A histone demethylase rescues differentiation in pRB-deficient cells. Genes Dev 29(17):1817–1834. https://doi.org/10.1101/gad.264036.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Palma-Gudiel H, Cordova-Palomera A, Leza JC, Fananas L (2015) Glucocorticoid receptor gene (NR3C1) methylation processes as mediators of early adversity in stress-related disorders causality: a critical review. Neurosci Biobehav Rev 55:520–535. https://doi.org/10.1016/j.neubiorev.2015.05.016

    Article  CAS  PubMed  Google Scholar 

  68. Wang L, Jiang Z, Huang D, Duan J, Huang C, Sullivan S, Vali K, Yin Y, Zhang M, Wegrzyn J, Tian XC, Tang Y (2018) JAK/STAT3 regulated global gene expression dynamics during late-stage reprogramming process. BMC Genom 19(1):183. https://doi.org/10.1186/s12864-018-4507-2

    Article  CAS  Google Scholar 

  69. Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA, Trapnell C (2017) Reversed graph embedding resolves complex single-cell trajectories. Nat Methods 14(10):979–982. https://doi.org/10.1038/nmeth.4402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Okashita N, Suwa Y, Nishimura O, Sakashita N, Kadota M, Nagamatsu G, Kawaguchi M, Kashida H, Nakajima A, Tachibana M, Seki Y (2016) PRDM14 drives OCT3/4 recruitment via active demethylation in the transition from primed to naive pluripotency. Stem cell Rep 7(6):1072–1086. https://doi.org/10.1016/j.stemcr.2016.10.007

    Article  CAS  Google Scholar 

  71. Thomas FH, Vanderhyden BC (2006) Oocyte-granulosa cell interactions during mouse follicular development: regulation of kit ligand expression and its role in oocyte growth. Reprod Biol Endocrinol RB&E 4:19. https://doi.org/10.1186/1477-7827-4-19

    Article  CAS  Google Scholar 

  72. Liu S, Trapnell C (2016) Single-cell transcriptome sequencing: recent advances and remaining challenges. F1000Res. https://doi.org/10.12688/f1000research.7223.1

    Article  PubMed  PubMed Central  Google Scholar 

  73. Bacher R, Kendziorski C (2016) Design and computational analysis of single-cell RNA-sequencing experiments. Genome Biol 17:63. https://doi.org/10.1186/s13059-016-0927-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rheaume BA, Jereen A, Bolisetty M, Sajid MS, Yang Y, Renna K, Sun L, Robson P, Trakhtenberg EF (2018) Author Correction: single cell transcriptome profiling of retinal ganglion cells identifies cellular subtypes. Nat Commun 9(1):3203. https://doi.org/10.1038/s41467-018-05792-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li L, Dong J, Yan L, Yong J, Liu X, Hu Y, Fan X, Wu X, Guo H, Wang X, Zhu X, Li R, Yan J, Wei Y, Zhao Y, Wang W, Ren Y, Yuan P, Yan Z, Hu B, Guo F, Wen L, Tang F, Qiao J (2017) Single-cell RNA-seq analysis maps development of human germline cells and gonadal niche interactions. Cell Stem Cell 20(6):891–892. https://doi.org/10.1016/j.stem.2017.05.009

    Article  CAS  PubMed  Google Scholar 

  76. Kalkan T, Bornelov S, Mulas C, Diamanti E, Lohoff T, Ralser M, Middelkamp S, Lombard P, Nichols J, Smith A (2019) Complementary activity of ETV5, RBPJ, and TCF3 drives formative transition from naive pluripotency. Cell Stem Cell. https://doi.org/10.1016/j.stem.2019.03.017

    Article  PubMed  PubMed Central  Google Scholar 

  77. Nicholas CR, Chavez SL, Baker VL, Reijo Pera RA (2009) Instructing an embryonic stem cell-derived oocyte fate: lessons from endogenous oogenesis. Endocr Rev 30(3):264–283. https://doi.org/10.1210/er.2008-0034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank all members of the Institute of Reproductive Sciences, Qingdao Agricultural University for their kind help during preparing single-cell samples and suggestions for preparing the manuscript. This work was supported by the National Key Research and Development Program of China (2018YFC1003400), National Nature Science Foundation (31671554 and 31970788) and Taishan Scholar Construction Foundation of Shandong Province (ts20190946).

Author information

Authors and Affiliations

Authors

Contributions

WG and WS: conceived and designed the experiments; WG, JW, RZ, ST, FZ, WL, LL, XS and SC: performed the experiments; WG, PD, MDF and WS: wrote and edited the manuscript.

Corresponding author

Correspondence to Wei Shen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

18_2020_3533_MOESM1_ESM.pdf

Supplementary material 1 Supplementary Figure 1 Quality control of the data set and representative cell marker gene expression analysis. a The summary metrics describe sequencing quality and various characteristics of the detected cells. b Barcode rank plot of all samples. c Violin plot demonstrating the number of genes (nGene), unique molecular identifier (nUMI) and percentage of mitochondria genes (percent.mito) in the different data sets. d tSNE plot of all single-cells coloured by sample information. e Marker gene expression projected into the tSNE plot. Mesothelial: Lhx9, Upk3b; Interstitial: Col1a2, Bgn;Endothelial: Pecam1, Kdr; Pluripotent genes: Utf1, Sall4, Pou5f1, Sox2; Meiotic genes: Sycp1, Rec8, Tex14, Mael; Pregranulosa genes: Wnt4, Wnt6; Erythroid genes: Alas2, Alad; Immune genes: Cd52, Car2. Supplementary Figure 2 Interpreting cellular diversity in the gonads. a The cell population dynamics during four different developmental time-points. The cells were colored coded with the same color as in Figure 1d. b Heatmap of top 10 expressed DEGs in each cluster. Each color bar in the column represents one cell cluster, and each row represents one gene. c Dot plot illustrating marker gene expression across all cell types. The dot size represents the percentage of cells expressing the indicated genes in each cluster and the dot colour intensity represents the average expression level of the indicated genes. d Immunofluorescence analysis of the mitotic GC marker UTF1 in E12.5, E13.5 and E14.5 ovarian cells. Scale bars = 25 μm. e GO enrichment of DEGs in germ cell clusters 1, 8, and 9. f GO enrichment of DEGs in granulosa precursor clusters. g GO enrichment of DEGs in interstitial cell clusters. h GO enrichment of DEGs in mesothelial cell clusters. i GO enrichment of DEGs in endothelial cell clusters. Supplementary Figure 3 Dissecting germ cell subclusters. a PCA plot labeled with tSNE identified clusters in Figure 2b. b Heatmap illustrating germ cell subcluster top 5 expressed genes. c Violin plot illustrating mitosis germ cell, early meiotic and late meiotic marker genes expression in each germ cell clusters. d Western blot analysis of STK31 expression in E12.5, E13.5 and E14.5 fetus ovaries. e Circos plot displaying shared DEGs and shared GO terms between different germ cell clusters. Shared DEGs were labeled with purple lines and shared GO terms were labeled with light blue lines. f Heatmap demonstrating the enrichment of GO terms in each germ cell cluster. Each row represents GO terms and each column represents a cell cluster. Supplementary Figure 4 SCENIC binary regulon activity matrix displaying all enriched regulons across different germ cell clusters. Each column represents one single cell and each row represents one regulon. Supplementary Figure 5 Pseudotime ordering of germ cells. a Visualization of variable genes used for Pseudotime ordering. b Expression profiles of representative marker genes identified by Monocle. The x-axis represents pseudotime. Supplementary Figure 6 Interpreting granulosa cell lineage cell fate using Monocle. a Pregranulosa cell lineage subclusters dynamics along developmental time point. b Heatmap of top 5 expressed DEGs in each cluster. Each column represents one cell cluster, and each row represents one gene. c Pseudotime ordering of all granulosa cell lineage clusters colored by cell identity, cell clusters, and cellular states. d GO enrichment of DEGs in different gene sets in Figure 5f. e Expression profile representative genes corresponding to each gene sets in Figure 5f. Supplementary Figure 7 Interpreting endothelial, interstitial and mesothelial cellular heterogeneity. a tSNE plot of endothelial, interstitial, and mesothelial cell clusters. Cells were labeled with sample identity. b Heatmap of top 5 expressed DEGs in each cluster corresponding to endothelial, interstitial and mesothelial cells. Each column represents one cell cluster, and each row represents one gene. c Expression of cell cycle-related marker genes in tSNE projection of endothelial, interstitial and mesothelial cells. (PDF 14812 kb)

Supplementary material 2 (XLSX 203 kb)

Supplementary material 3 (XLSX 6115 kb)

Supplementary material 4 (XLSX 1695 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, W., Wang, JJ., Zhang, RQ. et al. Dissecting the initiation of female meiosis in the mouse at single-cell resolution. Cell. Mol. Life Sci. 78, 695–713 (2021). https://doi.org/10.1007/s00018-020-03533-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03533-8

Keywords

Navigation