Skip to main content

Advertisement

Log in

Studies of ApoD/ and ApoD/ApoE/ mice uncover the APOD significance for retinal metabolism, function, and status of chorioretinal blood vessels

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Apolipoprotein D (APOD) is an atypical apolipoprotein with unknown significance for retinal structure and function. Conversely, apolipoprotein E (APOE) is a typical apolipoprotein with established roles in retinal cholesterol transport. Herein, we immunolocalized APOD to the photoreceptor inner segments and conducted ophthalmic characterizations of ApoD/ and ApoD/ApoE/ mice. ApoD/ mice had normal levels of retinal sterols but changes in the chorioretinal blood vessels and impaired retinal function. The whole-body glucose disposal was impaired in this genotype but the retinal glucose metabolism was unchanged. ApoD/ApoE/ mice had altered sterol profile in the retina but apparently normal chorioretinal vasculature and function. The whole-body glucose disposal and retinal glucose utilization were enhanced in this genotype. OB-Rb, both leptin and APOD receptor, was found to be expressed in the photoreceptor inner segments and was at increased abundance in the ApoD/ and ApoD/ApoE/ retinas. Retinal levels of Glut4 and Cd36, the glucose transporter and scavenger receptor, respectively, were increased as well, thus linking APOD to retinal glucose and fatty acid metabolism and suggesting the APOD-OB-Rb-GLUT4/CD36 axis. In vivo isotopic labeling, transmission electron microscopy, and retinal proteomics provided additional insights into the mechanism underlying the retinal phenotypes of ApoD/ and ApoD/ApoE/ mice. Collectively, our data suggest that the APOD roles in the retina are context specific and could determine retinal glucose fluxes into different pathways. APOD and APOE do not play redundant, complementary or opposing roles in the retina, rather their interplay is more complex and reflects retinal responses elicited by lack of these apolipoproteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

APOE:

Apolipoprotein E

APOD:

Apolipoprotein D

AQ4:

Aquaporin 4

ERG:

Electroretinographic recordings

FA:

Fluorescein angiography

FI:

Fundus imaging

GC–MS:

Gas chromatography–mass spectroscopy

HFHS:

High-fat high-sugar diet

IS:

Photoreceptor inner segments

NGS:

Normal goat serum

PBS:

Phosphate buffer saline

RPE:

Retinal pigment epithelium

SD-OCT:

Spectral-domain optical coherence tomography

TCA:

The tricarboxylic acid cycle

TEM:

Transmission electron microscopy

References

  1. Fliesler SJ, Bretillon L (2010) The ins and outs of cholesterol in the vertebrate retina. J Lipid Res 51:3399–3413. https://doi.org/10.1194/jlr.R010538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pikuleva IA, Curcio CA (2014) Cholesterol in the retina: the best is yet to come. Prog Retin Eye Res 41:64–89. https://doi.org/10.1016/j.preteyeres.2014.03.002

    Article  CAS  PubMed  Google Scholar 

  3. Tserentsoodol N, Gordiyenko NV, Pascual I et al (2006) Intraretinal lipid transport is dependent on high density lipoprotein-like particles and class b scavenger receptors. Mol Vis 12:1319–1333

    CAS  PubMed  Google Scholar 

  4. Tserentsoodol N, Sztein J, Campos M et al (2006) Uptake of cholesterol by the retina occurs primarily via a low density lipoprotein receptor-mediated process. Mol Vis 12:1306–1318

    CAS  PubMed  Google Scholar 

  5. Mahley RW (2016) Central nervous system lipoproteins: APOE and regulation of cholesterol metabolism. Arterioscler Thromb Vasc Biol 36:1305–1315. https://doi.org/10.1161/ATVBAHA.116.307023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Saadane A, Petrov A, Mast N et al (2018) Mechanisms that minimize retinal impact of apolipoprotein e absence. J Lipid Res 59:2368–2382. https://doi.org/10.1194/jlr.M090043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chernick D, Ortiz-Valle S, Jeong A et al (2019) Peripheral versus central nervous system APOE in Alzheimer’s disease: interplay across the blood-brain barrier. Neurosci Lett 708:134306. https://doi.org/10.1016/j.neulet.2019.134306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim J, Basak JM, Holtzman DM (2009) The role of apolipoprotein e in Alzheimer’s disease. Neuron 63:287–303. https://doi.org/10.1016/j.neuron.2009.06.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhao N, Liu CC, Qiao W et al (2018) Apolipoprotein e, receptors, and modulation of Alzheimer’s disease. Biol Psychiatry 83:347–357. https://doi.org/10.1016/j.biopsych.2017.03.003

    Article  CAS  PubMed  Google Scholar 

  10. Levy O, Lavalette S, Hu SJ et al (2015) APOE isoforms control pathogenic subretinal inflammation in age-related macular degeneration. J Neurosci 35:13568–13576. https://doi.org/10.1523/jneurosci.2468-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mayeux R, Stern Y, Ottman R et al (1993) The apolipoprotein epsilon 4 allele in patients with Alzheimer’s disease. Ann Neurol 34:752–754. https://doi.org/10.1002/ana.410340527

    Article  CAS  PubMed  Google Scholar 

  12. Corder EH, Saunders AM, Strittmatter WJ et al (1993) Gene dose of apolipoprotein e type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261:921–923

    Article  CAS  PubMed  Google Scholar 

  13. Corder EH, Saunders AM, Risch NJ et al (1994) Protective effect of apolipoprotein e type 2 allele for late onset Alzheimer disease. Nat Genet 7:180–184. https://doi.org/10.1038/ng0694-180

    Article  CAS  PubMed  Google Scholar 

  14. Klaver CC, Kliffen M, van Duijn CM et al (1998) Genetic association of apolipoprotein e with age-related macular degeneration. Am J Hum Genet 63:200–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Souied EH, Benlian P, Amouyel P et al (1998) The epsilon4 allele of the apolipoprotein e gene as a potential protective factor for exudative age-related macular degeneration. Am J Ophthalmol 125:353–359

    Article  CAS  PubMed  Google Scholar 

  16. McKay GJ, Patterson CC, Chakravarthy U et al (2011) Evidence of association of APOE with age-related macular degeneration: a pooled analysis of 15 studies. Hum Mutat 32:1407–1416. https://doi.org/10.1002/humu.21577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mak AC, Pullinger CR, Tang LF et al (2014) Effects of the absence of apolipoprotein e on lipoproteins, neurocognitive function, and retinal function. JAMA Neurol 71:1228–1236. https://doi.org/10.1001/jamaneurol.2014.2011

    Article  PubMed  PubMed Central  Google Scholar 

  18. Elliott DA, Weickert CS, Garner B (2010) Apolipoproteins in the brain: implications for neurological and psychiatric disorders. Clin Lipidol 51:555–573. https://doi.org/10.2217/CLP.10.37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Drayna D, Fielding C, McLean J et al (1986) Cloning and expression of human apolipoprotein D cDNA. J Biol Chem 261:16535–16539

    Article  CAS  PubMed  Google Scholar 

  20. McConathy WJ, Alaupovic P (1973) Isolation and partial characterization of apolipoprotein D: a new protein moiety of the human plasma lipoprotein system. FEBS Lett 37:178–182. https://doi.org/10.1016/0014-5793(73)80453-3

    Article  CAS  PubMed  Google Scholar 

  21. Perdomo G, Kim DH, Zhang T et al (2010) A role of apolipoprotein d in triglyceride metabolism. J Lipid Res 51:1298–1311. https://doi.org/10.1194/jlr.M001206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rassart E, Bedirian A, Do Carmo S et al (2000) Apolipoprotein D. Biochim Biophys Acta 1482:185–198

    Article  CAS  PubMed  Google Scholar 

  23. Soiland H, Soreide K, Janssen EA et al (2007) Emerging concepts of apolipoprotein D with possible implications for breast cancer. Cell Oncol 29:195–209

    PubMed  PubMed Central  Google Scholar 

  24. Chen YW, Gregory CM, Scarborough MT et al (2007) Transcriptional pathways associated with skeletal muscle disuse atrophy in humans. Physiol Genomics 31:510–520. https://doi.org/10.1152/physiolgenomics.00115.2006

    Article  CAS  PubMed  Google Scholar 

  25. Dassati S, Waldner A, Schweigreiter R (2014) Apolipoprotein D takes center stage in the stress response of the aging and degenerative brain. Neurobiol Aging 35:1632–1642. https://doi.org/10.1016/j.neurobiolaging.2014.01.148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Eichinger A, Nasreen A, Kim HJ et al (2007) Structural insight into the dual ligand specificity and mode of high density lipoprotein association of apolipoprotein D. J Biol Chem 282:31068–31075. https://doi.org/10.1074/jbc.M703552200

    Article  CAS  PubMed  Google Scholar 

  27. Liu Z, Chang GQ, Leibowitz SF (2001) Apolipoprotein D interacts with the long-form leptin receptor: a hypothalamic function in the control of energy homeostasis. FASEB J 15:1329–1331. https://doi.org/10.1096/fj.00-0530fje

    Article  CAS  PubMed  Google Scholar 

  28. Najyb O, Brissette L, Rassart E (2015) Apolipoprotein D internalization is a basigin-dependent mechanism. J Biol Chem 290:16077–16087. https://doi.org/10.1074/jbc.M115.644302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lai CJ, Cheng HC, Lin CY et al (2017) Activation of liver x receptor suppresses angiogenesis via induction of ApoD. FASEB J. https://doi.org/10.1096/fj.201700374R

    Article  PubMed  Google Scholar 

  30. Sarjeant JM, Lawrie A, Kinnear C et al (2003) Apolipoprotein D inhibits platelet-derived growth factor-bb-induced vascular smooth muscle cell proliferated by preventing translocation of phosphorylated extracellular signal regulated kinase 1/2 to the nucleus. Arterioscler Thromb Vasc Biol 23:2172–2177. https://doi.org/10.1161/01.ATV.0000100404.05459.39

    Article  CAS  PubMed  Google Scholar 

  31. D’Souza AM, Neumann UH, Glavas MM et al (2017) The glucoregulatory actions of leptin. Mol Metab 6:1052–1065. https://doi.org/10.1016/j.molmet.2017.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Banks AS, Davis SM, Bates SH et al (2000) Activation of downstream signals by the long form of the leptin receptor. J Biol Chem 275:14563–14572. https://doi.org/10.1074/jbc.275.19.14563

    Article  CAS  PubMed  Google Scholar 

  33. Bahrenberg G, Behrmann I, Barthel A et al (2002) Identification of the critical sequence elements in the cytoplasmic domain of leptin receptor isoforms required for janus kinase/signal transducer and activator of transcription activation by receptor heterodimers. Mol Endocrinol 16:859–872. https://doi.org/10.1210/mend.16.4.0800

    Article  CAS  PubMed  Google Scholar 

  34. Hileman SM, Pierroz DD, Masuzaki H et al (2002) Characterization of short isoforms of the leptin receptor in rat cerebral microvessels and of brain uptake of leptin in mouse models of obesity. Endocrinology 143:775–783. https://doi.org/10.1210/endo.143.3.8669

    Article  CAS  PubMed  Google Scholar 

  35. Blanco-Vaca F, Via DP, Yang CY et al (1992) Characterization of disulfide-linked heterodimers containing apolipoprotein d in human plasma lipoproteins. J Lipid Res 33:1785–1796

    Article  CAS  PubMed  Google Scholar 

  36. Tsukamoto K, Mani DR, Shi J et al (2013) Identification of apolipoprotein d as a cardioprotective gene using a mouse model of lethal atherosclerotic coronary artery disease. Proc Natl Acad Sci USA 110:17023–17028. https://doi.org/10.1073/pnas.1315986110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ganfornina MD, Do Carmo S, Lora JM et al (2008) Apolipoprotein D is involved in the mechanisms regulating protection from oxidative stress. Aging Cell 7:506–515. https://doi.org/10.1111/j.1474-9726.2008.00395.x

    Article  CAS  PubMed  Google Scholar 

  38. Balbin M, Freije JM, Fueyo A et al (1990) Apolipoprotein D is the major protein component in cyst fluid from women with human breast gross cystic disease. Biochem J 271:803–807. https://doi.org/10.1042/bj2710803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Alvarez ML, Barbon JJ, Gonzalez LO et al (2003) Apolipoprotein D expression in retinoblastoma. Ophthalmic Res 35:111–116. https://doi.org/10.1159/000069130

    Article  CAS  PubMed  Google Scholar 

  40. Hunter S, Weiss S, Ou CY et al (2005) Apolipoprotein D is down-regulated during malignant transformation of neurofibromas. Hum Pathol 36:987–993. https://doi.org/10.1016/j.humpath.2005.06.018

    Article  CAS  PubMed  Google Scholar 

  41. Jin D, El-Tanani M, Campbell FC (2006) Identification of apolipoprotein D as a novel inhibitor of osteopontin-induced neoplastic transformation. Int J Oncol 29:1591–1599

    CAS  PubMed  Google Scholar 

  42. Sasaki Y, Negishi H, Koyama R et al (2009) P53 family members regulate the expression of the apolipoprotein D gene. J Biol Chem 284:872–883. https://doi.org/10.1074/jbc.M807185200

    Article  CAS  PubMed  Google Scholar 

  43. Martineau C, Najyb O, Signor C et al (2016) Apolipoprotein D deficiency is associated to high bone turnover, low bone mass and impaired osteoblastic function in aged female mice. Metabolism 65:1247–1258. https://doi.org/10.1016/j.metabol.2016.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hitman GA, McCarthy MI, Mohan V et al (1992) The genetics of non-insulin-dependent diabetes mellitus in south india: an overview. Ann Med 24:491–497. https://doi.org/10.3109/07853899209167001

    Article  CAS  PubMed  Google Scholar 

  45. Vijayaraghavan S, Hitman GA, Kopelman PG (1994) Apolipoprotein-D polymorphism: a genetic marker for obesity and hyperinsulinemia. J Clin Endocrinol Metab 79:568–570. https://doi.org/10.1210/jcem.79.2.7913935

    Article  CAS  PubMed  Google Scholar 

  46. Baker WA, Hitman GA, Hawrami K et al (1994) Apolipoprotein D gene polymorphism: a new genetic marker for type 2 diabetic subjects in Nauru and South India. Diabet Med 11:947–952. https://doi.org/10.1111/j.1464-5491.1994.tb00252.x

    Article  CAS  PubMed  Google Scholar 

  47. Desai PP, Bunker CH, Ukoli FA et al (2002) Genetic variation in the apolipoprotein D gene among african blacks and its significance in lipid metabolism. Atherosclerosis 163:329–338. https://doi.org/10.1016/s0021-9150(02)00012-6

    Article  CAS  PubMed  Google Scholar 

  48. Desai PP, Hendrie HC, Evans RM et al (2003) Genetic variation in apolipoprotein D affects the risk of Alzheimer disease in African-Americans. Am J Med Genet B Neuropsychiatr Genet 116B:98–101. https://doi.org/10.1002/ajmg.b.10798

    Article  PubMed  Google Scholar 

  49. Helisalmi S, Hiltunen M, Vepsalainen S et al (2004) Genetic variation in apolipoprotein D and Alzheimer’s disease. J Neurol 251:951–957. https://doi.org/10.1007/s00415-004-0470-8

    Article  CAS  PubMed  Google Scholar 

  50. Waldner A, Dassati S, Redl B et al (2018) Apolipoprotein D concentration in human plasma during aging and in Parkinson’s disease: a cross-sectional study. Parkinsons Dis 2018:3751516. https://doi.org/10.1155/2018/3751516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Loerch PM, Lu T, Dakin KA et al (2008) Evolution of the aging brain transcriptome and synaptic regulation. PLoS ONE 3:e3329. https://doi.org/10.1371/journal.pone.0003329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. de Magalhaes JP, Curado J, Church GM (2009) Meta-analysis of age-related gene expression profiles identifies common signatures of aging. Bioinformatics 25:875–881. https://doi.org/10.1093/bioinformatics/btp073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee CK, Weindruch R, Prolla TA (2000) Gene-expression profile of the ageing brain in mice. Nat Genet 25:294–297. https://doi.org/10.1038/77046

    Article  CAS  PubMed  Google Scholar 

  54. Terrisse L, Seguin D, Bertrand P et al (1999) Modulation of apolipoprotein D and apolipoprotein E expression in rat hippocampus after entorhinal cortex lesion. Brain Res Mol Brain Res 70:26–35

    Article  CAS  PubMed  Google Scholar 

  55. Jansen PJ, Lutjohann D, Thelen KM et al (2009) Absence of ApoE upregulates murine brain ApoD and ABCA1 levels, but does not affect brain sterol levels, while human ApoE3 and human ApoE4 upregulate brain cholesterol precursor levels. J Alzheimers Dis 18:319–329. https://doi.org/10.3233/JAD-2009-1150

    Article  CAS  PubMed  Google Scholar 

  56. Levros LC Jr, Labrie M, Charfi C et al (2013) Binding and repressive activities of apolipoprotein E3 and E4 isoforms on the human ApoD promoter. Mol Neurobiol 48:669–680. https://doi.org/10.1007/s12035-013-8456-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu L, MacKenzie KR, Putluri N et al (2017) The glia-neuron lactate shuttle and elevated ROS promote lipid synthesis in neurons and lipid droplet accumulation in glia via APOE/D. Cell Metab 26(719–737):e716. https://doi.org/10.1016/j.cmet.2017.08.024

    Article  CAS  Google Scholar 

  58. Kalaany NY, Mangelsdorf DJ (2006) LXRs and FXR: the yin and yang of cholesterol and fat metabolism. Annu Rev Physiol 68:159–191. https://doi.org/10.1146/annurev.physiol.68.033104.152158

    Article  CAS  PubMed  Google Scholar 

  59. Boyles JK, Notterpek LM, Anderson LJ (1990) Accumulation of apolipoproteins in the regenerating and remyelinating mammalian peripheral nerve. Identification of apolipoprotein D, apolipoprotein A-IV, apolipoprotein E, and apolipoprotein A-I. J Biol Chem 265:17805–17815

    Article  CAS  PubMed  Google Scholar 

  60. Montpied P, de Bock F, Lerner-Natoli M et al (1999) Hippocampal alterations of apolipoprotein E and D mRNA levels in vivo and in vitro following kainate excitotoxicity. Epilepsy Res 35:135–146. https://doi.org/10.1016/s0920-1211(99)00003-0

    Article  CAS  PubMed  Google Scholar 

  61. Kosacka J, Gericke M, Nowicki M et al (2009) Apolipoproteins D and E3 exert neurotrophic and synaptogenic effects in dorsal root ganglion cell cultures. Neuroscience 162:282–291. https://doi.org/10.1016/j.neuroscience.2009.04.073

    Article  CAS  PubMed  Google Scholar 

  62. Do Carmo S, Seguin D, Milne R et al (2002) Modulation of apolipoprotein D and apolipoprotein E mRNA expression by growth arrest and identification of key elements in the promoter. J Biol Chem 277:5514–5523. https://doi.org/10.1074/jbc.M105057200

    Article  CAS  PubMed  Google Scholar 

  63. Schafer NF, Luhmann UF, Feil S et al (2009) Differential gene expression in Ndph-knockout mice in retinal development. Investig Ophthalmol Vis Sci 50:906–916. https://doi.org/10.1167/iovs.08-1731

    Article  Google Scholar 

  64. Zheng W, Mast N, Saadane A et al (2015) Pathways of cholesterol homeostasis in mouse retina responsive to dietary and pharmacologic treatments. J Lipid Res 56:81–97. https://doi.org/10.1194/jlr.M053439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Omarova S, Charvet CD, Reem RE et al (2012) Abnormal vascularization in mouse retina with dysregulated retinal cholesterol homeostasis. J Clin Investig 122:3012–3023. https://doi.org/10.1172/JCI63816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Saadane A, Mast N, Charvet CD et al (2014) Retinal and nonocular abnormalities in Cyp27a1(−/−)Cyp46a1(−/−) mice with dysfunctional metabolism of cholesterol. Am J Pathol 184:2403–2419. https://doi.org/10.1016/j.ajpath.2014.05.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Curcio CA, Rudolf M, Wang L (2009) Histochemistry and lipid profiling combine for insights into aging and age-related maculopathy. Methods Mol Biol 580:267–281. https://doi.org/10.1007/978-1-60761-325-1_15

    Article  CAS  PubMed  Google Scholar 

  68. Zheng W, Reem RE, Omarova S et al (2012) Spatial distribution of the pathways of cholesterol homeostasis in human retina. PLoS ONE 7:e37926. https://doi.org/10.1371/journal.pone.0037926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Saadane A, Mast N, Trichonas G et al (2019) Retinal vascular abnormalities and microglia activation in mice with deficiency in cytochrome p450 46a1-mediated cholesterol removal. Am J Pathol 189:405–425. https://doi.org/10.1016/j.ajpath.2018.10.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mast N, Reem R, Bederman I et al (2011) Cholestenoic acid is an important elimination product of cholesterol in the retina: comparison of retinal cholesterol metabolism with that in the brain. Investig Ophthalmol Vis Sci 52:594–603. https://doi.org/10.1167/iovs.10-6021

    Article  CAS  Google Scholar 

  71. Mast N, Shafaati M, Zaman W et al (2010) Marked variability in hepatic expression of cytochromes CYP7A1 and CYP27A1 as compared to cerebral CYP46A1. Lessons from a dietary study with omega 3 fatty acids in hamsters. Biochim Biophys Acta 1801:674–681. https://doi.org/10.1016/j.bbalip.2010.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang J, Xin L, Shan B et al (2012) Peaks DB: de novo sequencing assisted database search for sensitive and accurate peptide identification. Mol Cell Proteomics 11(M111):010587. https://doi.org/10.1074/mcp.M111.010587

    Article  CAS  PubMed  Google Scholar 

  74. Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolarity for use electron microscopy. J Cell Biol 27:137A

    Google Scholar 

  75. van Dijk TH, van der Sluijs FH, Wiegman CH et al (2001) Acute inhibition of hepatic glucose-6-phosphatase does not affect gluconeogenesis but directs gluconeogenic flux toward glycogen in fasted rats. A pharmacological study with the chlorogenic acid derivative S4048. J Biol Chem 276:25727–25735. https://doi.org/10.1074/jbc.M101223200

    Article  PubMed  Google Scholar 

  76. Pfrieger FW, Ungerer N (2011) Cholesterol metabolism in neurons and astrocytes. Prog Lipid Res 50:357–371. https://doi.org/10.1016/j.plipres.2011.06.002

    Article  CAS  PubMed  Google Scholar 

  77. Mast N, Bederman IR, Pikuleva IA (2018) Retinal cholesterol content is reduced in simvastatin-treated mice due to inhibited local biosynthesis albeit increased uptake of serum cholesterol. Drug Metab Dispos 46:1528–1537. https://doi.org/10.1124/dmd.118.083345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Castanho MA, Coutinho A, Prieto MJ (1992) Absorption and fluorescence spectra of polyene antibiotics in the presence of cholesterol. J Biol Chem 267:204–209

    Article  CAS  PubMed  Google Scholar 

  79. Coscas F, Coscas G, Souied E et al (2007) Optical coherence tomography identification of occult choroidal neovascularization in age-related macular degeneration. Am J Ophthalmol 144:592–599. https://doi.org/10.1016/j.ajo.2007.06.014

    Article  PubMed  Google Scholar 

  80. Robson JG, Frishman LJ (2014) The rod-driven a-wave of the dark-adapted mammalian electroretinogram. Prog Retin Eye Res 39:1–22. https://doi.org/10.1016/j.preteyeres.2013.12.003

    Article  PubMed  Google Scholar 

  81. Petrov AM, Astafev AA, Mast N et al (2019) The interplay between retinal pathways of cholesterol output and its effects on mouse retina. Biomolecules. https://doi.org/10.3390/biom9120867

    Article  PubMed  PubMed Central  Google Scholar 

  82. Westermann B (2010) Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11:872–884. https://doi.org/10.1038/nrm3013

    Article  CAS  PubMed  Google Scholar 

  83. Hsieh WT, Hsu CJ, Capraro BR et al (2012) Curvature sorting of peripheral proteins on solid-supported wavy membranes. Langmuir 28:12838–12843. https://doi.org/10.1021/la302205b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ait-Ali N, Fridlich R, Millet-Puel G et al (2015) Rod-derived cone viability factor promotes cone survival by stimulating aerobic glycolysis. Cell 161:817–832. https://doi.org/10.1016/j.cell.2015.03.023

    Article  CAS  PubMed  Google Scholar 

  85. Steinbusch LK, Schwenk RW, Ouwens DM et al (2011) Subcellular trafficking of the substrate transporters GLUT4 and CD36 in cardiomyocytes. Cell Mol Life Sci 68:2525–2538. https://doi.org/10.1007/s00018-011-0690-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Febbraio M, Hajjar DP, Silverstein RL (2001) CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Investig 108:785–791. https://doi.org/10.1172/jci14006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kerner J, Hoppel C (2000) Fatty acid import into mitochondria. Biochim Biophys Acta 1486:1–17. https://doi.org/10.1016/s1388-1981(00)00044-5

    Article  CAS  PubMed  Google Scholar 

  88. Tang J, Kern TS (2011) Inflammation in diabetic retinopathy. Prog Retin Eye Res 30:343–358. https://doi.org/10.1016/j.preteyeres.2011.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Durham JT, Herman IM (2011) Microvascular modifications in diabetic retinopathy. Curr Diab Rep 11:253–264. https://doi.org/10.1007/s11892-011-0204-0

    Article  PubMed  Google Scholar 

  90. Stitt AW, Lois N, Medina RJ et al (2013) Advances in our understanding of diabetic retinopathy. Clin Sci (Lond) 125:1–17. https://doi.org/10.1042/CS20120588

    Article  Google Scholar 

  91. Radu M, Chernoff J (2013) An in vivo assay to test blood vessel permeability. J Vis Exp. https://doi.org/10.3791/50062

    Article  PubMed  PubMed Central  Google Scholar 

  92. Ong JM, Zorapapel NC, Rich KA et al (2001) Effects of cholesterol and apolipoprotein E on retinal abnormalities in ApoE-deficient mice. Investig Ophthalmol Vis Sci 42:1891–1900

    CAS  Google Scholar 

  93. Ong JM, Zorapapel NC, Aoki AM et al (2003) Impaired electroretinogram (ERG) response in apolipoprotein E-deficient mice. Curr Eye Res 27:15–24

    Article  PubMed  Google Scholar 

  94. Dithmar S, Curcio CA, Le NA et al (2000) Ultrastructural changes in Bruch’s membrane of apolipoprotein E-deficient mice. Investig Ophthalmol Vis Sci 41:2035–2042

    CAS  Google Scholar 

  95. Kliffen M, Lutgens E, Daemen MJ et al (2000) The APO(*)E3-leiden mouse as an animal model for basal laminar deposit. Br J Ophthalmol 84:1415–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Malek G, Johnson LV, Mace BE et al (2005) Apolipoprotein E allele-dependent pathogenesis: a model for age-related retinal degeneration. Proc Natl Acad Sci USA 102:11900–11905. https://doi.org/10.1073/pnas.0503015102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Levy O, Calippe B, Lavalette S et al (2015) Apolipoprotein E promotes subretinal mononuclear phagocyte survival and chronic inflammation in age-related macular degeneration. EMBO Mol Med 7:211–226. https://doi.org/10.15252/emmm.201404524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Maioli S, Lodeiro M, Merino-Serrais P et al (2015) Alterations in brain leptin signalling in spite of unchanged CSF leptin levels in Alzheimer’s disease. Aging Cell 14:122–129. https://doi.org/10.1111/acel.12281

    Article  CAS  PubMed  Google Scholar 

  99. Konstantinidis D, Paletas K, Koliakos G et al (2009) Signaling components involved in leptin-induced amplification of the atherosclerosis-related properties of human monocytes. J Vasc Res 46:199–208. https://doi.org/10.1159/000161234

    Article  CAS  PubMed  Google Scholar 

  100. Wang JL, Chinookoswong N, Scully S et al (1999) Differential effects of leptin in regulation of tissue glucose utilization in vivo. Endocrinology 140:2117–2124. https://doi.org/10.1210/endo.140.5.6681

    Article  CAS  PubMed  Google Scholar 

  101. Sanchez-Chavez G, Pena-Rangel MT, Riesgo-Escovar JR et al (2012) Insulin stimulated-glucose transporter glut 4 is expressed in the retina. PLoS ONE 7:e52959. https://doi.org/10.1371/journal.pone.0052959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Naeser P (1997) Insulin receptors in human ocular tissues. Immunohistochemical demonstration in normal and diabetic eyes. Ups J Med Sci 102:35–40. https://doi.org/10.3109/03009739709178930

    Article  CAS  PubMed  Google Scholar 

  103. Joyal JS, Sun Y, Gantner ML et al (2016) Retinal lipid and glucose metabolism dictates angiogenesis through the lipid sensor Ffar1. Nat Med 22:439–445. https://doi.org/10.1038/nm.4059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Fielding PE, Fielding CJ (1980) A cholesteryl ester transfer complex in human plasma. Proc Natl Acad Sci USA 77:3327–3330. https://doi.org/10.1073/pnas.77.6.3327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wong-Riley MT (2010) Energy metabolism of the visual system. Eye Brain 2:99–116. https://doi.org/10.2147/EB.S9078

    Article  PubMed  PubMed Central  Google Scholar 

  106. Mantych GJ, Hageman GS, Devaskar SU (1993) Characterization of glucose transporter isoforms in the adult and developing human eye. Endocrinology 133:600–607. https://doi.org/10.1210/endo.133.2.8344201

    Article  CAS  PubMed  Google Scholar 

  107. Watanabe T, Mio Y, Hoshino FB et al (1994) Glut2 expression in the rat retina: localization at the apical ends of muller cells. Brain Res 655:128–134. https://doi.org/10.1016/0006-8993(94)91606-3

    Article  CAS  PubMed  Google Scholar 

  108. Kam JH, Jeffery G (2015) To unite or divide: mitochondrial dynamics in the murine outer retina that preceded age related photoreceptor loss. Oncotarget 6:26690–26701. https://doi.org/10.18632/oncotarget.5614

    Article  PubMed  PubMed Central  Google Scholar 

  109. Poitry-Yamate CL, Poitry S, Tsacopoulos M (1995) Lactate released by muller glial cells is metabolized by photoreceptors from mammalian retina. J Neurosci 15:5179–5191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Winkler BS, Arnold MJ, Brassell MA et al (1997) Glucose dependence of glycolysis, hexose monophosphate shunt activity, energy status, and the polyol pathway in retinas isolated from normal (nondiabetic) rats. Investig Ophthalmol Vis Sci 38:62–71

    CAS  Google Scholar 

  111. Bringmann A, Grosche A, Pannicke T et al (2013) GABA and glutamate uptake and metabolism in retinal glial (muller) cells. Front Endocrinol (Lausanne) 4:48. https://doi.org/10.3389/fendo.2013.00048

    Article  CAS  Google Scholar 

  112. Thanos S, Bohm MR, Meyer zu Horste M et al (2014) Role of crystallins in ocular neuroprotection and axonal regeneration. Prog Retin Eye Res 42:145–161. https://doi.org/10.1016/j.preteyeres.2014.06.004

    Article  CAS  PubMed  Google Scholar 

  113. Philp NJ, Yoon MY, Hock RS (1990) Identification and localization of talin in chick retinal pigment epithelial cells. Exp Eye Res 51:191–198

    Article  CAS  PubMed  Google Scholar 

  114. Sheedy FJ, Grebe A, Rayner KJ et al (2013) CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat Immunol 14:812–820. https://doi.org/10.1038/ni.2639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ryeom SW, Silverstein RL, Scotto A et al (1996) Binding of anionic phospholipids to retinal pigment epithelium may be mediated by the scavenger receptor CD36. J Biol Chem 271:20536–20539

    Article  CAS  PubMed  Google Scholar 

  116. Houssier M, Raoul W, Lavalette S et al (2008) CD36 deficiency leads to choroidal involution via COX2 down-regulation in rodents. PLoS Med 5:e39. https://doi.org/10.1371/journal.pmed.0050039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Picard E, Houssier M, Bujold K et al (2010) CD36 plays an important role in the clearance of oxLDL and associated age-dependent sub-retinal deposits. Aging (Albany NY) 2:981–989. https://doi.org/10.18632/aging.100218

    Article  CAS  Google Scholar 

  118. Nagelhus EA, Veruki ML, Torp R et al (1998) Aquaporin-4 water channel protein in the rat retina and optic nerve: polarized expression in muller cells and fibrous astrocytes. J Neurosci 18:2506–2519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kumar B, Gupta SK, Srinivasan BP et al (2013) Hesperetin rescues retinal oxidative stress, neuroinflammation and apoptosis in diabetic rats. Microvasc Res 87:65–74. https://doi.org/10.1016/j.mvr.2013.01.002

    Article  CAS  PubMed  Google Scholar 

  120. Kumar B, Gupta SK, Nag TC et al (2014) Retinal neuroprotective effects of quercetin in streptozotocin-induced diabetic rats. Exp Eye Res 125:193–202. https://doi.org/10.1016/j.exer.2014.06.009

    Article  CAS  PubMed  Google Scholar 

  121. Xu HP, Zhao JW, Yang XL (2002) Expression of voltage-dependent calcium channel subunits in the rat retina. Neurosci Lett 329:297–300. https://doi.org/10.1016/s0304-3940(02)00688-2

    Article  CAS  PubMed  Google Scholar 

  122. Nimmrich V, Gross G (2012) P/Q-type calcium channel modulators. Br J Pharmacol 167:741–759. https://doi.org/10.1111/j.1476-5381.2012.02069.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lohner M, Babai N, Muller T et al (2017) Analysis of rim expression and function at mouse photoreceptor ribbon synapses. J Neurosci 37:7848–7863. https://doi.org/10.1523/JNEUROSCI.2795-16.2017

    Article  PubMed  PubMed Central  Google Scholar 

  124. Grabner CP, Gandini MA, Rehak R et al (2015) RIM1/2-mediated facilitation of Cav1.4 channel opening is required for Ca2+-stimulated release in mouse rod photoreceptors. J Neurosci 35:13133–13147. https://doi.org/10.1523/JNEUROSCI.0658-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NIH grants EY018383 and EY011373 (I.A.P.) and the unrestricted grant from Research to Prevent Blindness. Irina A. Pikuleva is a Carl F. Asseff Professor of Ophthalmology. The authors thank the Visual Sciences Research Center Core Facilities (supported by National Institutes of Health Grant P30 EY11373) for assistance with mouse breeding (Heather Butler and Kathryn Franke), animal genotyping (John Denker), tissue sectioning (Catherine Doller), and microscopy (Scott Howell and Anthony Gardella). We are also grateful to Dr. Hisashi Fujioka (Electron Microscopy Core facility) for help with studies of retinal ultrastructure, to Danie Schlatzer (Proteomics and Small Molecule Mass Spectrometry Core) for conducting retinal label free analysis, and to Dr. Neal Peachey for assistance with the ERG studies.

Author information

Authors and Affiliations

Authors

Contributions

IAP and AMP conception and study design; IAP study supervision; NED, NM, AMP, TD, AAA, AS, EP, ES, and IB produced and analyzed data; IAP, NM, AMP, and IB wrote and edited the manuscript.

Corresponding author

Correspondence to Irina A. Pikuleva.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2576 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Darzi, N., Mast, N., Petrov, A.M. et al. Studies of ApoD/ and ApoD/ApoE/ mice uncover the APOD significance for retinal metabolism, function, and status of chorioretinal blood vessels. Cell. Mol. Life Sci. 78, 963–983 (2021). https://doi.org/10.1007/s00018-020-03546-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03546-3

Keywords

Navigation