Skip to main content
Log in

Topology optimization of elastic contact problems using B-spline parameterization

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This work extends B-spline parameterization method to topology optimization of elastic contact problems. Unlike the traditional density-based method, design variables directly refer to the control parameters of the B-spline. A continuous pseudo-density field representing the material distribution over the concerned design domain is constructed by means of B-spline parameterization and then discretized onto the finite element (FE) mesh. The threshold projection is further introduced to regularize the B-spline pseudo-density field for the reduction of gray areas related to the local support property of B-spline. 2D and 3D frictionless and frictional problems are solved to demonstrate the effectiveness of the proposed method. Results are also compared with those obtained by the traditional density-based method. It is shown that the B-spline parameterization is independent of the FE model and suitable to deal with contact problems of inherent contact nonlinearity. The optimized configuration with refined details and smoothed boundaries can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  • Alberdi R, Zhang GD, Li L, Khandelwal K (2018) A unified framework for nonlinear path-dependent sensitivity analysis in topology optimization. Int J Numer Methods Eng 115:1–56

    Article  MathSciNet  Google Scholar 

  • Bendsoe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsoe MP, Sigmund O (2013) Topology optimization: theory, methods, and applications. Springer Science & Business Media,

    MATH  Google Scholar 

  • Benedict RL (1982) Maximum stiffness design for elastic bodies in contact. J Mech Des 104:825–830

    Google Scholar 

  • Bennett JA, Botkin ME (1985) Structural shape optimization with geometric description and adaptive mesh refinement. AIAA J 23:458–464

    Article  Google Scholar 

  • Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50:2143–2158

    Article  MathSciNet  MATH  Google Scholar 

  • Bruggi M, Duysinx P (2013) A stress-based approach to the optimal design of structures with unilateral behavior of material or supports. Struct Multidiscip Optim 48:311–326

    Article  MathSciNet  Google Scholar 

  • Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190:3443–3459

    Article  MATH  Google Scholar 

  • Buhl T, Pedersen CBW, Sigmund O (2000) Stiffness design of geometrically nonlinear structures using topology optimization. Struct Multidiscip Optim 19:93–104

    Article  Google Scholar 

  • Costa G, Montemurro M, Pailhès J (2018) A 2D topology optimisation algorithm in NURBS framework with geometric constraints. Int J Mech Mater Des 14:669–696

    Article  Google Scholar 

  • Desmorat B (2007) Structural rigidity optimization with frictionless unilateral contact. Int J Solids Struct 44:1132–1144

    Article  MathSciNet  MATH  Google Scholar 

  • Fancello E (2006) Topology optimization for minimum mass design considering local failure constraints and contact boundary conditions. Struct Multidiscip Optim 32:229–240

    Article  MathSciNet  MATH  Google Scholar 

  • Gao J, Gao L, Luo Z, Li PG (2019) Isogeometric topology optimization for continuum structures using density distribution function. Int J Numer Methods Eng 119:991–1017

    Article  MathSciNet  Google Scholar 

  • Guest JK, Prevost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61:238–254

    Article  MathSciNet  MATH  Google Scholar 

  • Haug EJ, Kwak BM (1978) Contact stress minimization by contour design. Int J Numer Methods Eng 12:917–930

    Article  MATH  Google Scholar 

  • Jeong GE, Youn SK, Park KC (2018) Topology optimization of deformable bodies with dissimilar interfaces. Comput Struct 198:1–11

    Article  Google Scholar 

  • Kang Z, Wang YQ (2011) Structural topology optimization based on non-local Shepard interpolation of density field. Comput Methods Appl Mech Eng 200:3515–3525

    Article  MathSciNet  MATH  Google Scholar 

  • Kawamoto A, Matsumori T, Yamasaki S, Nomura T, Kondoh T, Nishiwaki S (2011) Heaviside projection based topology optimization by a PDE-filtered scalar function. Struct Multidiscip Optim 44:19–24

    Article  MATH  Google Scholar 

  • Klarbring A, Petersson J, Rönnqvist M (1995) Truss topology optimization including unilateral contact. J Optim Theory Appl 87:1–31

    Article  MathSciNet  MATH  Google Scholar 

  • Kristiansen H, Poulios K, Aage N (2020) Topology optimization for compliance and contact pressure distribution in structural problems with friction. Comput Methods Appl Mech Eng 364:112915

    Article  MathSciNet  MATH  Google Scholar 

  • Lawry M, Maute K (2015) Level set topology optimization of problems with sliding contact interfaces. Struct Multidiscip Optim 52:1107–1119

    Article  MathSciNet  Google Scholar 

  • Lawry M, Maute K (2018) Level set shape and topology optimization of finite strain bilateral contact problems. Int J Numer Methods Eng 113:1340–1369

    Article  MathSciNet  Google Scholar 

  • Li W, Li Q, Steven GP, Xie YM (2003) An evolutionary approach to elastic contact optimization of frame structures. Finite Elem Anal Des 40:61–81

    Article  Google Scholar 

  • Li Y, Zhu JH, Wang FW, Zhang WH, Sigmund O (2019) Shape preserving design of geometrically nonlinear structures using topology optimization. Struct Multidiscip Optim 59:1033–1051

    Article  MathSciNet  Google Scholar 

  • Lopes CG, dos Santos RB, Novotny AA, Sokolowski J (2017) Asymptotic analysis of variational inequalities with applications to optimum design in elasticity. Asymptot Anal 102:227–242

    MathSciNet  MATH  Google Scholar 

  • Luo YJ, Li M, Kang Z (2016) Topology optimization of hyperelastic structures with frictionless contact supports. Int J Solids Struct 81:373–382

    Article  Google Scholar 

  • Ma YH, Chen XQ, Zuo WJ (2020) Equivalent static displacements method for contact force optimization. Struct Multidiscip Optim:1–14

  • Mankame ND, Ananthasuresh GK (2004) Topology optimization for synthesis of contact-aided compliant mechanisms using regularized contact modeling. Comput Struct 82:1267–1290

    Article  Google Scholar 

  • Meng L et al (2019) From topology optimization design to additive manufacturing: today’s success and tomorrow’s roadmap. Arch Comput Methods Eng 27:805–830

    Article  Google Scholar 

  • Michaleris P, Tortorelli DA, Vidal CA (1994) Tangent operators and design sensitivity formulations for transient non-linear coupled problems with applications to elastoplasticity. Int J Numer Methods Eng 37:2471–2499

    Article  MATH  Google Scholar 

  • Mulaik SA (2009) Foundations of factor analysis. CRC press

  • Myśliński A (2015) Piecewise constant level set method for topology optimization of unilateral contact problems. Adv Eng Softw 80:25–32

    Article  Google Scholar 

  • Myśliński A, Wróblewski M (2017) Structural optimization of contact problems using Cahn-Hilliard model. Comput Struct 180:52–59

    Article  Google Scholar 

  • Niu C, Zhang WH, Gao T (2019) Topology optimization of continuum structures for the uniformity of contact pressures. Struct Multidiscip Optim 60:185–210

    Article  MathSciNet  Google Scholar 

  • Niu C, Zhang WH, Gao T (2020) Topology optimization of elastic contact problems with friction using efficient adjoint sensitivity analysis with load increment reduction. Comput Struct 238:106296

    Article  Google Scholar 

  • Oden JT, Pires EB (1983) Nonlocal and nonlinear friction laws and variational principles for contact problems in elasticity. J Appl Mech 50:67–76

    Article  MathSciNet  MATH  Google Scholar 

  • Paczelt I, Baksa A, Mroz Z (2016) Contact optimization problems for stationary and sliding conditions vol 40. Mathematical Modeling and Optimization of Complex Structures. Springer-Verlag Berlin, Berlin

  • Petersson J, Patriksson M (1997) Topology optimization of sheets in contact by a subgradient method. Int J Numer Methods Eng 40:1295–1321

    Article  MathSciNet  MATH  Google Scholar 

  • Piegl L, Tiller W (2012) The NURBS book. Springer Science & Business Media

    MATH  Google Scholar 

  • Qian XP (2013) Topology optimization in B-spline space. Comput Methods Appl Mech Eng 265:15–35

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33:401–424

    Article  Google Scholar 

  • Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48:1031–1055

    Article  MathSciNet  Google Scholar 

  • Sokół T, Rozvany GIN (2013) Exact truss topology optimization for external loads and friction forces. Struct Multidiscip Optim 48:853–857

    Article  MathSciNet  Google Scholar 

  • Stromberg N (2010) Topology optimization of structures with manufacturing and unilateral contact constraints by minimizing an adjustable compliance-volume product. Struct Multidiscip Optim 42:341–350

    Article  MathSciNet  MATH  Google Scholar 

  • Strömberg N (2010) Topology optimization of two linear elastic bodies in unilateral contact. In: Proc. of the 2nd Int Conf on Engineering Optimization, Lisbon, Portugal, 2010

  • Stromberg N (2013) The influence of sliding friction on optimal topologies. In: Stavroulakis GE (ed) Recent advances in contact mechanics, vol 56. Lecture Notes in Applied and Computational Mechanics. pp 327-336

  • Stromberg N, Klarbring A (2010) Topology optimization of structures in unilateral contact. Struct Multidiscip Optim 41:57–64

    Article  MathSciNet  MATH  Google Scholar 

  • Svanberg K (1995) A globally convergent version of MMA without linesearch. In: Proceedings of the first world congress of structural and multidisciplinary optimization, 1995. Goslar, Germany, pp 9–16

    Google Scholar 

  • Wang MM, Qian XP (2015) Efficient filtering in topology optimization via b-splines. J Mech Des 137

  • Wang FW, Lazarov BS, Sigmund O (2010) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43:767–784

    Article  MATH  Google Scholar 

  • Wang J, Zhu JH, Hou J, Wang C, Zhang WH (2020) Lightweight design of a bolt-flange sealing structure based on topology optimization. Struct Multidiscip Optim

  • Wriggers P (2006) Computational contact mechanics, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  • Xia L, Fritzen F, Breitkopf P (2017) Evolutionary topology optimization of elastoplastic structures. Struct Multidiscip Optim 55:569–581

    Article  MathSciNet  Google Scholar 

  • Xu SL, Cai YW, Cheng GD (2010) Volume preserving nonlinear density filter based on heaviside functions. Struct Multidiscip Optim 41:495–505

    Article  MathSciNet  MATH  Google Scholar 

  • Xu Z, Zhang WH, Gao T, Zhu JH (2020) A B-spline multi-parameterization method for multi-material topology optimization of thermoelastic structures. Struct Multidiscip Optim 61:923–942

    Article  MathSciNet  Google Scholar 

  • Yang RJ, Chen CJ (1996) Stress-based topology optimization. Struct Optim 12:98–105

    Article  Google Scholar 

  • Zhang WH, Niu C (2018) A linear relaxation model for shape optimization of constrained contact force problem. Comput Struct 200:53–67

    Article  Google Scholar 

  • Zhang WH, Zhou Y, Zhu JH (2017) A comprehensive study of feature definitions with solids and voids for topology optimization. Comput Methods Appl Mech Eng 325:289–313

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work is supported by the National Key Research and Development Program of China (2017YFB1102800), National Natural Science Foundation of China (12032018, 11620101002), and China Postdoctoral Science Foundation (2020M673520).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihong Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Replication of results

The necessary information for replication of the results is present in the manuscript. The interested reader may contact the corresponding author for further implementation details.

Additional information

Responsible Editor: Shikui Chen

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhang, W., Niu, C. et al. Topology optimization of elastic contact problems using B-spline parameterization. Struct Multidisc Optim 63, 1669–1686 (2021). https://doi.org/10.1007/s00158-020-02837-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-020-02837-4

Keywords

Navigation