Skip to main content
Log in

Local conditions influence thermal sensitivity of pencil urchin populations (Eucidaris galapagensis) in the Galápagos Archipelago

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The responses of ectothermic organisms to changes in temperature can be modified by acclimatization or adaptation to local thermal conditions. Thus, the effect of global warming and the deleterious effects of extreme  heating events (e.g., heatwaves) on the metabolism and fitness of ectotherms can be population specific and reduced at warmer sites. We tested the hypothesis that when environmental temperature is greater, grazer populations in the Galápagos are less thermally sensitive (potentially due to acclimatization or adaptation). We quantified the acute thermal sensitivity of four populations of the pencil sea urchin, Eucidaris galapagensis, by measuring individual oxygen consumption across a range of temperatures. Thermal performance curves were estimated for each population and compared to local thermal conditions 2 months prior to collection. Results indicate that E. galapagensis populations were adapted and/or acclimatized to short-term local temperature as populations at warmer sites had substantially higher thermal tolerances. The acute thermal optimum (Topt) for the warmest and coolest site populations differed by 3 °C and the Topt was positively correlated with maximum temperature recorded at each site. Additionally, temperature-normalized respiration rate and activation energy (E) were negatively related to the maximum temperature. Understanding the temperature-dependent performance of the pencil urchin (the most significant mesograzer in this system), including its population specificity, provides insight into how herbivores and the functions they perform might be affected by further ocean heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All R data and code will be made publicly available at https://github.com/njsilbiger/GalapagosUrchins.

References

  • Alvarado JJ, Solís-Marín FA (2013) Echinoderms of Ecuador. Echinoderm research and diversity in Latin America. Springer, Berlin, pp 191–202

    Google Scholar 

  • Andrew N (1993) Spatial heterogeneity, sea urchin grazing, and habitat structure on reefs in temperate Australia. Ecology 74:292–302

    Google Scholar 

  • Angilletta MJ Jr, Angilletta MJ (2009) Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press, Oxford

    Google Scholar 

  • Baker AC, Glynn PW, Riegl B (2008) Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Estuar Coast Shelf Sci 80:435–471

    Google Scholar 

  • Banks S, Edgar G, Glynn P, Kuhn A, Moreno J, Ruiz D, Schuhbauer A, Tiernan JP, Tirado N, Vera M (2011) A review of Galápagos marine habitats and ecological processes under climate change scenarios. Clim Change Vulnerability Assess Galápagos Isl 47

  • Barshis DJ, Ladner JT, Oliver TA, Seneca FO, Traylor-Knowles N, Palumbi SR (2013) Genomic basis for coral resilience to climate change. Proc Natl Acad Sci 110:1387–1392

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brandt M, Guarderas P (2002) Erizos de mar. In: Reserva Marina de Galápagos. Línea Base de la Biodiversidad. Fundación Charles Darwin/Servicio Parque Nacional Galápagos, Santa Cruz, Galápagos, Ecuador. Fundación Charles Darwin/Servicio Parque Nacional Galápagos, Santa Cruz, Galápagos, Ecuador, pp 396–418

  • Brandt M, Witman JD, Chiriboga AI (2012) Influence of a dominant consumer species reverses at increased diversity. Ecology 93:868–878

    PubMed  Google Scholar 

  • Bruno JF, Carr LA, O’Connor MI (2015) Exploring the role of temperature in the ocean through metabolic scaling. Ecology 96:3126–3140. https://doi.org/10.1890/14-1954.1

  • Burge CA, Mark Eakin C, Friedman CS, Froelich B, Hershberger PK, Hofmann EE, Petes LE, Prager KC, Weil E, Willis BL (2014) Climate change influences on marine infectious diseases: implications for management and society. Annu Rev Mar Sci 6:249–277

    Google Scholar 

  • Carr LA, Bruno JF (2013) Warming increases the top-down effects and metabolism of a subtidal herbivore. PeerJ 1:e109

  • Castillo K, Helmuth B (2005) Influence of thermal history on the response of Montastraea annularis to short-term temperature exposure. Mar Biol 148:261–270

    Google Scholar 

  • Chapman A, Johnson C (1990) Disturbance and organization of macroalgal assemblages in the Northwest Atlantic. Hydrobiologia 192:77–121

    Google Scholar 

  • Chevin L-M, Lande R, Mace GM (2010) Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLOS Biol 8:e1000357. https://doi.org/10.1371/journal.pbio.1000357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke A, Johnston NM (1999) Scaling of metabolic rate with body mass and temperature in teleost fish. J Anim Ecol 68:893–905

  • Carr LA, Gittman RK, Bruno JF (2018) Temperature influences herbivory and algal biomass in the Galápagos Islands. Front Mar Sci. https://doi.org/10.3389/fmars.2018.00279

  • Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci 105:6668–6672. https://doi.org/10.1073/pnas.0709472105

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong Y, Somero GN (2009) Temperature adaptation of cytosolic malate dehydrogenases of limpets (genus Lottia): differences in stability and function due to minor changes in sequence correlate with biogeographic and vertical distributions. J Exp Biol 212:169–177. https://doi.org/10.1242/jeb.024505

    Article  CAS  PubMed  Google Scholar 

  • Edgar G, Banks S, Fariña J, Calvopiña M, Martínez C (2004) Regional biogeography of shallow reef fish and macro-invertebrate communities in the Galapagos archipelago. J Biogeogr 31:1107–1124

    Google Scholar 

  • Edgar GJ, Banks SA, Brandt M, Bustamante RH, Chiriboga A, Earle SA, Garske LE, Glynn PW, Grove JS, Henderson S (2010) El Niño, grazers and fisheries interact to greatly elevate extinction risk for Galapagos marine species. Glob Change Biol 16:2876–2890

    Google Scholar 

  • Elzhov TV, Mullen KM, Spiess A-N, Bolker B (2013) minpack. lm: R interface to the Levenberg-Marquardt nonlinear least-squares algorithm found in MINPACK, plus support for bounds. R package version 1.1–8

  • Eppley RW (1972) Temperature and phytoplankton growth in the sea. In: Fishery Bulletin. U.S. Department of Commerce/National Oceanic and Atmospheric Administration/National Marine Fisheries Services, Seattle, pp 1063–1085

  • Feingold JS, Glynn PW (2014) Coral research in the Galápagos Islands, Ecuador. The Galapagos marine reserve: a dynamic social–ecological system. Springer, New York, pp 3–22

    Google Scholar 

  • Glynn PW (1984) Widespread coral mortality and the 1982–83 El Niño warming event. Environ Conserv 11:133–146

    Google Scholar 

  • Glynn PW (1988) El Niño warming, coral mortality and reef framework destruction by echinoid bioerosion in the eastern Pacific. Galaxea 7:129–160

    Google Scholar 

  • Glynn PW (1990) Coral mortality and disturbances to coral reefs in the tropical eastern Pacific. In: Global Ecological Consequences of the 1982–1983 El Nino—Southern Oscillation. Elsevier Oceanography Series, pp 55–126

  • Glynn PJ, Glynn PW, Riegl B (2017) El Niño, echinoid bioerosion and recovery potential of an isolated Galápagos coral reef: a modeling perspective. Mar Biol 164:146

    Google Scholar 

  • Graham MH (2004) Effects of local deforestation on the diversity and structure of southern California giant kelp forest food webs. Ecosystems 7:341–357

    Google Scholar 

  • Gunderson AR, Stillman JH (2015) Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. Proc R Soc B Biol Sci 282:20150401

    Google Scholar 

  • Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temperature on metabolic rate. Science 293:2248–2251. https://doi.org/10.1126/science.1061967

  • Harris M (1969) Breeding seasons of sea-birds in the Galapagos Islands. J Zool 159:145–165

    Google Scholar 

  • Houde ED (1989) Comparative growth, mortality, and energetics of marine fish larvae: temperature and implied latitudinal effects. Fish Bull 87:471–495

  • Harvell C, Montecino-Latorre D, Caldwell J, Burt J, Bosley K, Keller A, Heron S, Salomon A, Lee L, Pontier O (2019) Disease epidemic and a marine heat wave are associated with the continental-scale collapse of a pivotal predator (Pycnopodia helianthoides). Sci Adv 5:eaau7042

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485. https://doi.org/10.1038/nature09670

    Article  CAS  PubMed  Google Scholar 

  • Houvenaghel G (1978) Oceanographic conditions in the Galapagos Archipelago and their relationships with life on the Islands. Upwelling ecosystems. Springer Berlin, Heidelberg, New York, pp 181–200

    Google Scholar 

  • Houvenaghel G (1984) Oceanographic setting of the Galapagos Islands. Key environments: Galapagos. Pergamon Press, Oxford, pp 43–54

    Google Scholar 

  • Huey RB, Kingsolver JG (1989) Evolution of thermal sensitivity of ectotherm performance. Trends Ecol Evol 4:131–135

    CAS  PubMed  Google Scholar 

  • Huey RB, Stevenson R (1979) Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. Integr Comp Biol 19:357–366. https://doi.org/10.1093/icb/19.1.357

    Article  Google Scholar 

  • Irving AD, Witman JD (2009) Positive effects of damselfish override negative effects of urchins to prevent an algal habitat switch. J Ecol 97:337–347

    Google Scholar 

  • Jennings S, Brierley A, Walker J (1994) The inshore fish assemblages of the Galápagos Archipelago. Biol Conserv 70:49–57

    Google Scholar 

  • Kern P, Cramp RL, Franklin CE (2015) Physiological responses of ectotherms to daily temperature variation. J Exp Biol 218:3068–3076. https://doi.org/10.1242/jeb.123166

    Article  PubMed  Google Scholar 

  • Kuo ESL, Sanford E (2009) Geographic variation in the upper thermal limits of an intertidal snail: implications for climate envelope models. Mar Ecol Prog Ser 388:137–146. https://doi.org/10.3354/meps08102

    Article  Google Scholar 

  • Lawrence J, Sonnenholzner J (2004) Distribution and abundance of asteroids, echinoids, and holothuroids in Galápagos. Echinoderms: München. A.A. Balkema Publishers, New York, pp 239–244

    Google Scholar 

  • Lessios HA, Kessing BD, Robertson DR, Paulay G (1999) Phylogeography of the pantropical sea urchin Eucidaris in relation to land barriers and ocean currents. Evolution 53:806–817

    CAS  PubMed  Google Scholar 

  • López-Urrutia Á, San Martin E, Harris RP, Irigoien X (2006) Scaling the metabolic balance of the oceans. Proc Natl Acad Sci 103:8739–8744. https://doi.org/10.1073/pnas.0601137103

  • Manzello DP, Enochs IC, Bruckner A, Renaud PG, Kolodziej G, Budd DA, Carlton R, Glynn PW (2014) Galápagos coral reef persistence after ENSO warming across an acidification gradient. Geophys Res Lett 41:9001–9008

    Google Scholar 

  • Oliver T, Palumbi S (2011) Do fluctuating temperature environments elevate coral thermal tolerance? Coral Reefs 30:429–440

    Google Scholar 

  • O’Connor MI, Piehler MF, Leech DM, Anton A, Bruno JF (2009) Warming and resource availability shift food web structure and metabolism. PLoS Biol 7:e1000178. https://doi.org/10.1371/journal.pbio.1000178

  • Padfield D, Matheson G (2018) nls. multstart: robust non-linear regression using AIC scores.

  • Padfield D, Yvon-Durocher G, Buckling A, Jennings S, Yvon-Durocher G (2016) Rapid evolution of metabolic traits explains thermal adaptation in phytoplankton. Ecol Lett 19:133–142

    PubMed  Google Scholar 

  • Padfield D, Lowe C, Buckling A, Ffrench-Constant R, Student Research Team, Jennings S, Shelley F, Ólafsson JS, Yvon-Durocher G (2017) Metabolic compensation constrains the temperature dependence of gross primary production. Ecol Lett 20:1250–1260

    PubMed  PubMed Central  Google Scholar 

  • Palumbi SR, Barshis DJ, Traylor-Knowles N, Bay RA (2014) Mechanisms of reef coral resistance to future climate change. Science 344:895–898

    CAS  PubMed  Google Scholar 

  • Pinsky ML, Eikeset AM, McCauley DJ, Payne JL, Sunday JM (2019) Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569:108

    CAS  PubMed  Google Scholar 

  • Putnam HM, Gates RD (2015) Preconditioning in the reef-building coral Pocillopora damicornis and the potential for trans-generational acclimatization in coral larvae under future climate change conditions. J Exp Biol 218:2365–2372

    PubMed  Google Scholar 

  • Ruttenberg BI (2001) Effects of artisanal fishing on marine communities in the Galapagos Islands. Conserv Biol 15:1691–1699

    Google Scholar 

  • Sanford E (1999) Regulation of keystone predation by small changes in ocean temperature. Science 283:2095–2097

    CAS  PubMed  Google Scholar 

  • Sanford E (2002) The feeding, growth, and energetics of two rocky intertidal predators (Pisaster ochraceus and Nucella canaliculata) under water temperatures simulating episodic upwelling. J Exp Mar Biol Ecol 273:199–218

    Google Scholar 

  • Schaeffer BA, Morrison JM, Kamykowski D, Feldman GC, Xie L, Liu Y, Sweet W, McCulloch A, Banks S (2008) Phytoplankton biomass distribution and identification of productive habitats within the Galapagos Marine Reserve by MODIS, a surface acquisition system, and in-situ measurements. Remote Sens Environ 112:3044–3054

    Google Scholar 

  • Schoolfield R, Sharpe PJ, Magnuson C (1981) Non-linear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J Theor Biol 88:719–731

    CAS  PubMed  Google Scholar 

  • Schulte PM, Healy TM, Fangue NA (2011) Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure. Integr Comp Biol 51:691–702

    PubMed  Google Scholar 

  • Seebacher F, White CR, Franklin CE (2015) Physiological plasticity increases resilience of ectothermic animals to climate change. Nat Clim Change 5:61

    Google Scholar 

  • Sewell MA, Young CM (1999) Temperature limits to fertilization and early development in the tropical sea urchin Echinometra lucunter. J Exp Mar Biol Ecol 236:291–305

    Google Scholar 

  • Siddon CE, Witman JD (2003) Influence of chronic, low-level hydrodynamic forces on subtidal community structure. Mar Ecol Prog Ser 261:99–110

    Google Scholar 

  • Silbiger NJ, Goodbody-Gringley G, Bruno JF, Putnam HM (2019) Comparative thermal performance of the reef-building coral Orbicella franksi at its latitudinal range limits. Mar Biol 166:126

    Google Scholar 

  • Sinclair B, Williams C, Terblanche J (2012) Variation in thermal performance among insect populations. Physiol Biochem Zool 85:594–606. https://doi.org/10.1086/665388

    Article  PubMed  Google Scholar 

  • Sinclair BJ, Marshall KE, Sewell MA, Levesque DL, Willett CS, Slotsbo S, Dong Y, Harley CD, Marshall DJ, Helmuth BS (2016) Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecol Lett 19:1372–1385

    PubMed  Google Scholar 

  • Somero G (2010) The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers.’ J Exp Biol 213:912–920

    CAS  PubMed  Google Scholar 

  • Staehli A, Schaerer R, Hoelzle K, Ribi G (2009) Temperature induced disease in the starfish Astropecten jonstoni. Mar Biodivers Rec 2:e78. https://doi.org/10.1017/S1755267209000633

    Article  Google Scholar 

  • Steneck RS, Graham MH, Bourque BJ, Corbett D, Erlandson JM, Estes JA, Tegner MJ (2002) Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ Conserv 29:436–459

    Google Scholar 

  • Stillman JH (2002) Causes and consequences of thermal tolerance limits in rocky intertidal porcelain crabs, genus Petrolisthes. Integr Comp Biol 42:790–796. https://doi.org/10.1093/icb/42.4.790

    Article  PubMed  Google Scholar 

  • Stickle W, Moore M, Bayne B (1985) Effects of temperature, salinity and aerial exposure on predation and lysosomal stability of the dogwhelk Thais (Nucella) lapillus (L.). J Exp Mar Biol Ecol 93:235–258. https://doi.org/10.1016/0022-0981(85)90242-4

  • Sweet M, Bulling M, Williamson JE (2016) New disease outbreak affects two dominant sea urchin species associated with Australian temperate reefs. Mar Ecol Prog Ser 551:171–183

    CAS  Google Scholar 

  • Tomanek L, Somero GN (1999) Evolutionary and acclimation-induced variation in the heat-shock responses of congeneric marine snails (genus Tegula) from different thermal habitats: implications for limits of thermotolerance and biogeography. J Exp Biol 202:2925–2936

    CAS  PubMed  Google Scholar 

  • Vasseur DA, DeLong JP, Gilbert B, Greig HS, Harley CD, McCann KS, Savage V, Tunney TD, O’Connor MI (2014) Increased temperature variation poses a greater risk to species than climate warming. Proc R Soc B Biol Sci 281:20132612

    Google Scholar 

  • Wellington GM (1984) Marine environment and protection. Key environments: Galapagos. Pergamon Press, Oxford, pp 247–264

    Google Scholar 

  • Wellington GM, Strong AE, Merlen G (2001) Sea surface temperature variation in the Galapagos Archipelago: a comparison between AVHRR nighttime satellite data and in situ instrumentation (1982–1998). Bulletin of marine science. University of Miami—Rosenstiel School of Marine and Atmospheric Science, Miami, pp 27–42

    Google Scholar 

  • Witman JD, Brandt M, Smith F (2010) Coupling between subtidal prey and consumers along a mesoscale upwelling gradient in the Galapagos Islands. Ecol Monogr 80:153–177

    Google Scholar 

  • Wolcott TG (1973) Physiological ecology and intertidal zonation in limpets (Acmaea): a critical look at" limiting factors". Biol Bull 145:389–422

    Google Scholar 

Download references

Acknowledgements

We thank the Galápagos National Park Directorate for granting the permit PC-25-18 to perform the research, the Galápagos Science Center for logistics and facilities support (special thanks to S. Sotamba, J. Sotamba, D. Alarcón, C. Vintimilla, A. Carrión, and S. Sarzosa), the Universidad San Francisco de Quito and The University of North Carolina at Chapel Hill, the divers and field assistants O. Gorman, B. Morse, D. Fernández, M.J. Guarderas, J.M. Álava and E. Spencer, who either participated in the research cruise or provided guidance with data management preceding its analysis. We thank Captain E. Rosero and the crew of the research vessel Queen Mabel for providing reliable access to study sites and for fieldwork support. We thank the reviewers for their valuable remarks and suggestions that contributed to improving this manuscript.

Funding

The project was funded by the National Science Foundation (Grant OCE #1737071 to JFB).

Author information

Authors and Affiliations

Authors

Contributions

JFB and MB designed the experiment. JFB provided the materials and funding. MB, JFB, and ISR collected the data. ISR processed the data. NJS statistically analyzed the data. ISR, JFB, NJS, and MB wrote the manuscript.

Corresponding author

Correspondence to Isabel Silva Romero.

Ethics declarations

Conflict of interest

The authors have no conflict of interests.

Ethical approval

All applicable national and institutional guidelines for sampling, care and experimental use of organisms for the study have been followed. We obtained all necessary approvals and performed all the fieldwork and data collection under the permit PC 25–18 granted by the Galápagos National Park Directorate.

Additional information

Responsible Editor: A.E. Todgham.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reviewers: undisclosed experts.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 9041 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva Romero, I., Bruno, J.F., Silbiger, N.J. et al. Local conditions influence thermal sensitivity of pencil urchin populations (Eucidaris galapagensis) in the Galápagos Archipelago. Mar Biol 168, 34 (2021). https://doi.org/10.1007/s00227-021-03836-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-021-03836-9

Navigation