Skip to main content
Log in

Progressive gray matter hypertrophy with severity stages of insomnia disorder and its relevance for mood symptoms

  • Head and Neck
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

To investigate the gray matter (GM) alterations in patients with insomnia disorder (ID) at different severity stages and the relationship between GM alterations and sleep, mood, and cognitive measures.

Methods

One hundred one ID patients and 63 healthy controls (HC) were included. Each patient underwent structural MRI and completed sleep-, mood-, and cognitive-related questionnaires. The ID patients were further grouped into subthreshold insomnia (SI) group and clinical insomnia (CI) group. We investigated changes in GM volumes in ID patients via diffeomorphic anatomical registration through exponentiated lie algebra voxel-based morphometry (DARTEL-VBM). We first compared voxel-wise differences in GM volumes between the HC group and the ID group. Analysis of variance was performed on individual GM maps in the SI, CI, and HC groups to further investigate the effects of different stages of ID severity on GM volumes. Multiple regression was used to model the relationship between altered GM volumes in SI and CI groups and clinical measures.

Results

GM hypertrophies in the left anterior and middle cingulate gyrus, right middle and inferior temporal gyrus, and right cerebellum Crus II were detected in ID. Increased GM volume in the right middle temporal gyrus was detected in the SI group, whereas all three regions in the CI group. Regression analysis showed that mood- and cognitive-related measures had a positive correlation with GM volumes, while sleep-related measures had a negative correlation with GM volumes in the CI group.

Conclusions

Our findings of the progressively increased GM volumes in ID suggest that a hypertrophic cortical morphological mechanism may underlie the altered neuroanatomy induced by insomnia.

Key Points

Insomnia-induced GM hypertrophies in the cingulate gyrus, temporal gyrus, and cerebellum Crus II.

The middle temporal gyrus was early detectable in the SI group.

The increased GM volumes in the CI group were correlated with clinical measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACC:

Anterior cingulate cortex

CI:

Clinical insomnia

DARTEL:

Diffeomorphic anatomical registration through exponentiated lie algebra

GM:

Gray matter

HC:

Healthy controls

ID:

Insomnia disorder

MDD:

Major depressive disorder

SI:

Subthreshold insomnia

VBM:

Voxel-based morphometry

References

  1. Gupta R, Zalai D, Spence DW et al (2014) When insomnia is not just insomnia: the deeper correlates of disturbed sleep with reference to DSM-5. Asian J Psychiatr 12:23–30

    Article  PubMed  Google Scholar 

  2. Baglioni C, Battagliese G, Feige B et al (2011) Insomnia as a predictor of depression: a meta-analytic evaluation of longitudinal epidemiological studies. J Affect Disord 135:10–19

    Article  PubMed  Google Scholar 

  3. Taylor DJ, Lichstein KL, Durrence HH, Reidel BW, Bush AJ (2005) Epidemiology of insomnia, depression, and anxiety. Sleep 28:1457–1464

    Article  PubMed  Google Scholar 

  4. van Mill JG, Hoogendijk WJ, Vogelzangs N, van Dyck R, Penninx BW (2010) Insomnia and sleep duration in a large cohort of patients with major depressive disorder and anxiety disorders. J Clin Psychiatry 71:239–246

    Article  PubMed  Google Scholar 

  5. Riemann D, Spiegelhalder K, Feige B et al (2010) The hyperarousal model of insomnia: a review of the concept and its evidence. Sleep Med Rev 14:19–31

    Article  PubMed  Google Scholar 

  6. Nofzinger EA, Buysse DJ, Germain A, Price JC, Miewald JM, Kupfer DJ (2004) Functional neuroimaging evidence for hyperarousal in insomnia. Am J Psychiatry 161:2126–2128

    Article  PubMed  Google Scholar 

  7. Wang T, Li S, Jiang G et al (2016) Regional homogeneity changes in patients with primary insomnia. Eur Radiol 26:1292–1300

    Article  PubMed  Google Scholar 

  8. Dai XJ, Peng DC, Gong HH et al (2014) Altered intrinsic regional brain spontaneous activity and subjective sleep quality in patients with chronic primary insomnia: a resting-state fMRI study. Neuropsychiatr Dis Treat 10:2163–2175

    Article  PubMed  PubMed Central  Google Scholar 

  9. Winkelman JW, Plante DT, Schoerning L et al (2013) Increased rostral anterior cingulate cortex volume in chronic primary insomnia. Sleep 36:991–998

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yu S, Feng F, Zhang Q et al (2018) Gray matter hypertrophy in primary insomnia: a surface-based morphometric study. Brain Imaging Behav. https://doi.org/10.1007/s11682-018-9992-z

  11. Plante DT, Jensen JE, Schoerning L, Winkelman JW (2012) Reduced gamma-aminobutyric acid in occipital and anterior cingulate cortices in primary insomnia: a link to major depressive disorder? Neuropsychopharmacology 37:1548–1557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Altena E, Vrenken H, Van Der Werf YD, van den Heuvel OA, Van Someren EJ (2010) Reduced orbitofrontal and parietal gray matter in chronic insomnia: a voxel-based morphometric study. Biol Psychiatry 67:182–185

    Article  PubMed  Google Scholar 

  13. Joo EY, Noh HJ, Kim JS et al (2013) Brain gray matter deficits in patients with chronic primary insomnia. Sleep 36:999–1007

    Article  PubMed  PubMed Central  Google Scholar 

  14. Riemann D, Voderholzer U, Spiegelhalder K et al (2007) Chronic insomnia and MRI-measured hippocampal volumes: a pilot study. Sleep 30:955–958

    Article  PubMed  PubMed Central  Google Scholar 

  15. Winkelman JW, Benson KL, Buxton OM et al (2010) Lack of hippocampal volume differences in primary insomnia and good sleeper controls: an MRI volumetric study at 3 Tesla. Sleep Med 11:576–582

    Article  PubMed  Google Scholar 

  16. Spiegelhalder K, Regen W, Baglioni C et al (2013) Insomnia does not appear to be associated with substantial structural brain changes. Sleep 36:731–737

    Article  PubMed  PubMed Central  Google Scholar 

  17. Li M, Yan J, Li S et al (2018) Altered gray matter volume in primary insomnia patients: a DARTEL-VBM study. Brain Imaging Behav 12:1759–1767

    Article  PubMed  Google Scholar 

  18. Tahmasian M, Noori K, Samea F et al (2018) A lack of consistent brain alterations in insomnia disorder: an activation likelihood estimation meta-analysis. Sleep Med Rev 42:111–118

    Article  PubMed  PubMed Central  Google Scholar 

  19. Michael T, Smith STW (2003) Measures of sleep: the Insomnia Severity Index, Medical Outcomes Study (MOS) Sleep Scale, Pittsburgh Sleep Diary (PSD), and Pittsburgh Sleep Quality Index (PSQI). Arthritis Care Res 49:S184–S196

    Article  Google Scholar 

  20. Bastien CH, Vallieres A, Morin CM (2001) Validation of the Insomnia Severity Index as an outcome measure for insomnia research. Sleep Med 2:297–307

    Article  PubMed  Google Scholar 

  21. Morin CM, Belleville G, Belanger L, Ivers H (2011) The Insomnia Severity Index: psychometric indicators to detect insomnia cases and evaluate treatment response. Sleep 34:601–608

    Article  PubMed  PubMed Central  Google Scholar 

  22. Veqar Z, Hussain ME (2017) Validity and reliability of insomnia severity index and its correlation with pittsburgh sleep quality index in poor sleepersamong Indian university students. Int J Adolesc Med Health 32:1–5

    Google Scholar 

  23. Manjon JV, Coupe P, Marti-Bonmati L, Collins DL, Robles M (2010) Adaptive non-local means denoising of MR images with spatially varying noise levels. J Magn Reson Imaging 31:192–203

    Article  PubMed  Google Scholar 

  24. Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38:95–113

    Article  PubMed  Google Scholar 

  25. Rodriguez-Cano E, Sarro S, Monte GC et al (2014) Evidence for structural and functional abnormality in the subgenual anterior cingulate cortex in major depressive disorder. Psychol Med 44:3263–3273

    Article  CAS  PubMed  Google Scholar 

  26. Sambataro F, Doerig N, Hanggi J et al (2018) Anterior cingulate volume predicts response to psychotherapy and functional connectivity with the inferior parietal cortex in major depressive disorder. Eur Neuropsychopharmacol 28:138–148

    Article  CAS  PubMed  Google Scholar 

  27. Li G, Zhang X, Zhang J, Wang E, Zhang H, Li Y (2018) Magnetic resonance study on the brain structure and resting-state brain functional connectivity in primary insomnia patients. Medicine (Baltimore) 97:e11944

    Article  Google Scholar 

  28. Yan CQ, Liu CZ, Wang X et al (2018) Abnormal functional connectivity of anterior cingulate cortex in patients with primary insomnia: a resting-state functional magnetic resonance imaging study. Front Aging Neurosci 10:167

    Article  PubMed  PubMed Central  Google Scholar 

  29. Koolschijn PC, van Haren NE, Lensvelt-Mulders GJ, Hulshoff Pol HE, Kahn RS (2009) Brain volume abnormalities in major depressive disorder: a meta-analysis of magnetic resonance imaging studies. Hum Brain Mapp 30:3719–3735

    Article  PubMed  PubMed Central  Google Scholar 

  30. Salvadore G, Nugent AC, Lemaitre H et al (2011) Prefrontal cortical abnormalities in currently depressed versus currently remitted patients with major depressive disorder. Neuroimage 54:2643–2651

    Article  PubMed  Google Scholar 

  31. Peterson BS, Weissman MM (2011) A brain-based endophenotype for major depressive disorder. Annu Rev Med 62:461–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Canto CB, Onuki Y, Bruinsma B, van der Werf YD, De Zeeuw CI (2017) The sleeping cerebellum. Trends Neurosci 40:309–323

    Article  CAS  PubMed  Google Scholar 

  33. Kirschen MP, Chen SH, Schraedley-Desmond P, Desmond JE (2005) Load- and practice-dependent increases in cerebro-cerebellar activation in verbal working memory: an fMRI study. Neuroimage 24:462–472

    Article  PubMed  Google Scholar 

  34. Pedroso JL, Braga-Neto P, Felicio AC et al (2011) Sleep disorders in cerebellar ataxias. Arq Neuropsiquiatr 69:253–257

    Article  PubMed  Google Scholar 

  35. Kjaer TW, Law I, Wiltschiotz G, Paulson OB, Madsen PL (2002) Regional cerebral blood flow during light sleep--a H(2)(15)O-PET study. J Sleep Res 11:201–207

    Article  PubMed  Google Scholar 

  36. Kajimura N, Uchiyama M, Takayama Y et al (1999) Activity of midbrain reticular formation and neocortex during the progression of human non-rapid eye movement sleep. J Neurosci 19:10065–10073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Richardson JT (2007) Measures of short-term memory: a historical review. Cortex 43:635–650

    Article  PubMed  Google Scholar 

  38. Jackson RL, Bajada CJ, Rice GE, Cloutman LL, Lambon Ralph MA (2018) An emergent functional parcellation of the temporal cortex. Neuroimage 170:385–399

    Article  PubMed  Google Scholar 

  39. Suslow T, Husslack A, Bujanow A et al (2019) Implicitly and explicitly assessed anxiety: no relationships with recognition of and brain response to facial emotions. Neuroscience 408:1–13

    Article  CAS  PubMed  Google Scholar 

  40. Pico-Perez M, Radua J, Steward T, Menchon JM, Soriano-Mas C (2017) Emotion regulation in mood and anxiety disorders: a meta-analysis of fMRI cognitive reappraisal studies. Prog Neuropsychopharmacol Biol Psychiatry 79:96–104

    Article  PubMed  Google Scholar 

  41. Geng H, Wang Y, Gu R et al (2018) Altered brain activation and connectivity during anticipation of uncertain threat in trait anxiety. Hum Brain Mapp 39:3898–3914

    Article  PubMed  PubMed Central  Google Scholar 

  42. Xia L, Li S, Wang T et al (2017) Spontaneous alterations of regional brain activity in patients with adult generalized anxiety disorder. Neuropsychiatr Dis Treat 13:1957–1965

    Article  PubMed  PubMed Central  Google Scholar 

  43. Strawn JR, John Wegman C, Dominick KC et al (2014) Cortical surface anatomy in pediatric patients with generalized anxiety disorder. J Anxiety Disord 28:717–723

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank all the participants involved in this project.

Funding

This study was funded by the National Natural Science Foundation of China (Grant Nos. 81901731, 81701111, 81471639, U1903120, 81771807), the Science and Technology Planning Project of Guangdong (202002030234), and the National Natural Science Foundation of Guangdong Province (2018A0303130129)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guihua Jiang.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Guihua Jiang.

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

Bin A. Wang has significant statistical expertise.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• prospective

• cross-sectional study

• performed at one institution

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Wang, B.A., Li, C. et al. Progressive gray matter hypertrophy with severity stages of insomnia disorder and its relevance for mood symptoms. Eur Radiol 31, 6312–6322 (2021). https://doi.org/10.1007/s00330-021-07701-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-021-07701-7

Keywords

Navigation