Skip to main content
Log in

Nitric Oxide Mitigates the Salt-Induced Oxidative Damage in Mustard by UpRegulating the Activity of Various Enzymes

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The salt stress limits the production of mustard throughout the world and it is one of the major abiotic stresses. Crop productivity is declining due to the limited area of fertile land. In order to investigate the effects NO donor on salt tolerance and the recovery of Brassica juncea. (L) cv. RGN-48, sodium nitroprusside (SNP) was applied at 1, 10 or 100 µM concentrations as foliar spray for five days consecutively. SNP triggered a significant increase in the main antioxidative enzymes including catalase (CAT), peroxidase (POX) and superoxide dismutase (SOD) along with the increase in the enzymes involved in nitrogen metabolism (nitrate reductase), photosynthesis and respiration (carbonic anhydrase, rubisco, fumarase, hexokinase and succinate dehydrogenase). On the other hand, decrease in programmed cell death (PCD) and the contents of hydrogen peroxide (H2O2), superoxide anion (O2.−) and malondialdehyde (MDA) was observed in NaCl-stressed plants subjected to the different concentrations of SNP. Consequently, the spray of SNP restored several photosynthetic attributes i.e. SPAD chlorophyll, chlorophyll fluorescence and gas exchange parameters in NaCl-stressed plants. These results suggested that exogenous application of SNP is useful in ameliorating the toxicity generated by NaCl in mustard plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, Hernandez JA (2017) Plant responses to salt stress: adaptive mechanisms. Agronomy 1:18

    Google Scholar 

  • Adamu TA, Mun BG, Lee SU, Hussain A, Yun BW (2018) Exogenously applied nitric oxide enhances salt tolerance in rice (Oryza sativa L.) at seedling stage. Agronomy. 8(12):276

    CAS  Google Scholar 

  • Ahmad P, Abdel Latef AA, Hashem A et al (2016) Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Front Plant Sci 7:347

    PubMed  PubMed Central  Google Scholar 

  • Ahammed GJ, Li Y, Li X, Han WY, Chen S (2018) Epigallocatechin-3-gallate alleviates salinity-retarded seed germination and oxidative stress in tomato. J Plant Growth Regul 37(4):1349–1356

    CAS  Google Scholar 

  • Ahammed GJ, Li X, Liu A, Chen S (2020a) Brassinosteroids in plant tolerance to abiotic stress. J Plant Growth Regul 1:14

    Google Scholar 

  • Ahammed GJ, Li X, Wan H, Zhou G, Cheng Y (2020b) SlWRKY81 reduces drought tolerance by attenuating proline biosynthesis in tomato. Sci Hort 270:109444

    CAS  Google Scholar 

  • Amirjani MR (2010) Effect of salinity stress on growth, mineral composition, proline content, antioxidant enzymes of soybean. Am J Plant Physiol 5:350–360

    CAS  Google Scholar 

  • Amirjani MR (2011) Effect of salinity stress on growth, sugar content, pigments and enzyme activity of rice. Int J Bot 7:73–81

    CAS  Google Scholar 

  • Antoniou C, Filippou P, Mylona P, Fasoula D, Ioannides I, Polidoros A (2013) Fotopoulos V. Developmental stage-and concentration-specific sodium nitroprusside application results in nitrate reductase regulation and the modification of nitrate metabolism in leaves of Medicago truncatula plants. Plant Signal Behav 8:e25479

    PubMed  PubMed Central  Google Scholar 

  • Apse MP, Blumwald E (2007) Na+ transport in plants. FEBS Lett 58:2247–2254

    Google Scholar 

  • Arasimowicz M, Floryszak-Wieczorek J (2007) Nitric oxide as a bioactive signalling molecule in plant stress responses. Plant Sci 172:876–887

    CAS  Google Scholar 

  • Arshi A, Abdin MZ, Iqbal M (2005) Ameliorative effects of CaCl2 on growth, ionic relations, and proline content of senna under salinity stress. J Plant Ntr 28:101–125

    CAS  Google Scholar 

  • Ashraf MP, Harris PJ (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    CAS  Google Scholar 

  • Ashwell G (1957) Colorimetric analysis of sugar. In: Colowick SP, Kaplan NO (eds) Methods in enzymology. Academic Press, New York

    Google Scholar 

  • Aslam M, Huffaker RC, Rains DW (1984) Early effects of salinity on nitrate assimilation in barley seedlings. Plant Physiol 76:321–325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balotf S, Islam S, Kavoosi G, Kholdebarin B, Juhasz A, Ma W (2018) How exogenous nitric oxide regulates nitrogen assimilation in wheat seedlings under different nitrogen sources and levels. PLoS ONE 13:e0190269

    PubMed  PubMed Central  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil Plant Soil 39:205–207

    CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and assay applicable to acrylamide gels. Anal Biochem 44:276–287

    CAS  PubMed  Google Scholar 

  • Begara-Morales JC, Sánchez-Calvo B, Chaki M, Valderrama R, Mata-Pérez C, Padilla MN, Corpas FJ, Barroso JB (2016) Antioxidant systems are regulated by nitric oxide-mediated post-translational modifications (NO-PTMs). Front Plant Sci 7:152

    PubMed  PubMed Central  Google Scholar 

  • Beligni MV, Lamattina L (1999) Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues. Planta 208(337–344):44

    Google Scholar 

  • Beligni MV, Lamattina L (2002) Nitric oxide interferes with plant photo-oxidative stress by detoxifying reactive oxygen species. Plant Cell Environ 25:737–748

    CAS  Google Scholar 

  • Boriboonkaset T, Theerawitaya C, Yamada N, Pichakum A, Supaibulwatana K, Cha-um S, Takabe T, Kirdmanee C (2013) Regulation of some carbohydrate metabolism-related genes, starch and soluble sugar contents, photosynthetic activities and yield attributes of two contrasting rice genotypes subjected to salt stress. Protoplasma 250:1157–1167

    CAS  PubMed  Google Scholar 

  • Calatayud A, Barreno E (2004) Response to ozone in two lettuce varieties on chlorophyll a fluorescence, photosynthetic pigments and lipid peroxidation. Plant Physiol Biochem 42:549–555

    CAS  PubMed  Google Scholar 

  • Chance B, Maehly AC (1954) Assay of catalases and peroxidases. Methods Enzymol 2:764–775

    Google Scholar 

  • Che-Othman MH, Millar AH, Taylor NL (2017) Connecting salt stress signalling pathways with salinity-induced changes in mitochondrial metabolic processes in C 3 plants. Plant Cell Environ 40(12):2875–2905

    CAS  PubMed  Google Scholar 

  • Correa-Aragunde N, Graziano M, Lamattina L (2004) Nitric oxide plays a central role in determining lateral root development in tomato. Planta 218:900–905

    CAS  PubMed  Google Scholar 

  • Cruz JL, Coelho Filho MA, Coelho EF, Santos AA (2017) Salinity reduces carbon assimilation and the harvest index of cassava plants (Manihot esculenta Crantz). Acta Sci Agron 39:545–555

    Google Scholar 

  • Cui B, Yang Q, Zhang K, Zhao X, You Z (2010) Responses of saltcedar (Tamarix chinensis) to water table depth and soil salinity in the Yellow River Delta, China. Plant Ecol 209:279–290

    Google Scholar 

  • Dias MC, Mariz-Ponte N, Santos C (2019) Lead induces oxidative stress in Pisum sativum plants and changes the levels of phytohormones with antioxidant role. Plant Physiol Biochem 137:121–129

    CAS  PubMed  Google Scholar 

  • Dong Y, Chen W, Zhuge Y, Song Y, Hu G, Wan Y, Liu F (2018) Effect of application of exogenous nitric oxide at different critical growth stages in alleviating Fe deficiency chlorosis of peanut growing in calcareous soil. J Plant Nutr 41:867–887

    CAS  Google Scholar 

  • Dong YJ, Jinc SS, Liu S, Xu LL, Kong J (2014) Effects of exogenous nitric oxide on growth of cotton seedlings under NaCl stress. J Soil Sci Plant Ntr 4:1–3

    Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PT, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    CAS  Google Scholar 

  • Dwivedi RS, Randhawa NS (1974) Evaluation of a rapid test for the hidden hunger of zinc in plants. Plant Soil 40:445–451

    CAS  Google Scholar 

  • Egbichi I, Keyster M, Ludidi N (2014) Effect of exogenous application of nitric oxide on salt stress responses of soybean. S Afr J Bot 90:131–136

    CAS  Google Scholar 

  • Etehadnia M, Schoenau J, Waterer D, Karen T (2010) The effect of CaCl2 and NaCl salt acclimation in stress tolerance and its potential role in ABA and scion/rootstock-mediated salt stress responses. Plant Stress 4:72–81

    Google Scholar 

  • Fernández-Marcos M, Sanz L, Lorenzo O (2012) Nitric oxide: an emerging regulator of cell elongation during primary root growth. Plant Signal Behav 7:196–200

    PubMed  PubMed Central  Google Scholar 

  • Ferreira FJ, Guo C, Coleman JR (2008) Reduction of plastid-localized carbonic anhydrase activity results in reduced Arabidopsis seedling survivorship. Plant Physiol 147:585–594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcıia-Mata C, Lamattina L (2001) Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol. 126:1196–1204

    Google Scholar 

  • Gayatri G, Agurla S, Raghavendra AS (2013) Nitric oxide in guard cells as an important secondary messenger during stomatal closure. Front Plant Sci 4:425

    PubMed  PubMed Central  Google Scholar 

  • Genisel M, Erdal S, Kizilkaya M (2015) The mitigating effect of cysteine on growth inhibition in salt-stressed barley seeds is related to its own reducing capacity rather than its effects on antioxidant system. Plant Growth Regul 75:187–197

    CAS  Google Scholar 

  • Gharsallah C, Fakhfakh H, Grubb D, Gorsane F (2016) Effect of salt stress on ion concentration, proline content, antioxidant enzyme activities and gene expression in tomato cultivars. AoB Plants 1:8

    Google Scholar 

  • Gliozeris S, Tamosiunas A, Stuopyte L (2007) Effect of some growth regulators on chlorophyll fluorescence in Viola× wittrockiana ‘Wesel Ice.’ Biologija 53:24–27

    CAS  Google Scholar 

  • Graziano M, Beligni MV, Lamattina L (2002) Nitric oxide improves internal iron availability in plants. Plant Physiol 130:1852–1859

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genom 2014:701596

    Google Scholar 

  • Gupta KJ, Shah JK, Brotman Y, Jahnke K, Willmitzer L, Kaiser WM, Bauwe H, Igamberdiev AU (2012) Inhibition of aconitase by nitric oxide leads to induction of the alternative oxidase and to a shift of metabolism towards biosynthesis of amino acids. J Exp Bot 63:1773–1784

    CAS  PubMed  Google Scholar 

  • Habib MA, Shahbaz M (2013) Effect of exogenously applied nitric oxide on some key physiological attributes of rice (Oryza sativa L.) plants under salt stress. Pak J Bot 45:1563–1569

    CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Fujita M (2012) Exogenous nitric oxide alleviates high temperature induced oxidative stress in wheat ('Triticum aestivum’ L.) seedlings by modulating the antioxidant defense and glyoxalase system. Aust J Crop Sci. 6:1314

    CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Hossain MS, Anee TI, Parvin K, Fujita M (2017) Nitric oxide pretreatment enhances antioxidant defense and glyoxalase systems to confer PEG-induced oxidative stress in rapeseed. J Plant Interact 12:323–331

    CAS  Google Scholar 

  • Hayat S, Ali B, Hasan SA, Ahmad A (2007) Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environ Exp Bot 60:33–41

    CAS  Google Scholar 

  • Hayat S, Yadav S, Wani AS, Irfan M, Alyemini MN, Ahmad A (2012) Impact of sodium nitroprusside on nitrate reductase, proline content, and antioxidant system in tomato under salinity stress. HEB 53:362–367

    CAS  Google Scholar 

  • He H, Oo TL, Huang W, He LF, Gu M (2019) Nitric oxide acts as an antioxidant and inhibits programmed cell death induced by aluminum in the root tips of peanut (Arachis hypogaea L.). Sci Rep 9:1–2

    Google Scholar 

  • He Y, Tang RH, Hao Y, Stevens RD, Cook CW, Ahn SM, Jing L, Yang Z, Chen L, Guo F, Fiorani F (2004) Nitric oxide represses the Arabidopsis floral transition. Science 305:1968–1971

    CAS  PubMed  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    CAS  PubMed  Google Scholar 

  • Hernández JA (2019) Salinity tolerance in plants: trends and perspectives. Int J Mol Sci 20(10):2408

    PubMed Central  Google Scholar 

  • Hussain TM, Hazara M, Sultan Z, Saleh BK, Gopal GR (2008) Recent advances in salt stress biology a review. Biotechnol Mol Biol Rev 3:8–13

    Google Scholar 

  • Ismail A, Takeda S, Nick P (2014) Life and death under salt stress: same players, different timing? J Exp Bot 65:2963–2979

    CAS  PubMed  Google Scholar 

  • Jasid S, Galatro A, Villordo JJ, Puntarulo S, Simontacchi M (2009) Role of nitric oxide in soybean cotyledon senescence. Plant Sci 176:662–668

    CAS  Google Scholar 

  • Jaworski EG (1971) Nitrate reductase assay in intact plant tissues. Biochem Biophys Res Commun 43:1274–1279

    CAS  PubMed  Google Scholar 

  • Joseph B, Jini D (2010) Salinity induced programmed cell death in plants: challenges and opportunities for salt-tolerant plants. J Plant Sci 5:376–390

    CAS  Google Scholar 

  • Kalaji HM, Bosa K, Kościelniak J, Żuk-Gołaszewska K (2011) Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environ Exp Bot 73:64–72

    CAS  Google Scholar 

  • Kaur G, Singh HP, Batish DR, Mahajan P, Kohli RK, Rishi V (2015) Exogenous nitric oxide (NO) interferes with lead (Pb)-induced toxicity by detoxifying reactive oxygen species in hydroponically grown wheat (Triticum aestivum) roots. PLoS ONE 10:e0138713

    PubMed  PubMed Central  Google Scholar 

  • Kaur N, Sharma I, Kirat K, Pati PK (2016) Detection of reactive oxygen species in Oryza sativa L. (rice). Bio Protoc 6:1–9

    Google Scholar 

  • Kaya C, Ashraf M, Alyemeni MN, Ahmad P (2019) Responses of nitric oxide and hydrogen sulfide in regulating oxidative defence system in wheat plants grown under cadmium stress. Physiol Plant 168:345–360

    PubMed  Google Scholar 

  • Khan MA, Weber DJ (2006) Ecophysiology of high salinity tolerant plants. Springer, Berlin

    Google Scholar 

  • Khoshbakht D, Asghari MR, Haghighi M (2018) Effects of foliar applications of nitric oxide and spermidine on chlorophyll fluorescence, photosynthesis and antioxidant enzyme activities of citrus seedlings under salinity stress. Photosynthetica 56:1313–1325

    CAS  Google Scholar 

  • Kong X, Wang T, Li W, Tang W, Zhang D, Dong H (2016) Exogenous nitric oxide delays salt-induced leaf senescence in cotton (Gossypium hirsutum L.). Acta Physiol Plant. 38:61

    Google Scholar 

  • Krall JP, Edwards GE (1992) Relationship between photosystem II activity and CO2 fixation in leaves. Physiol Plant 86:180–187

    CAS  Google Scholar 

  • Kun E, Abood LG (1949) Calorimetric estimation of succinate dehydrogenase by TCC. Sci Rep 109:144–146

    CAS  Google Scholar 

  • Lamattina L, García-Mata C, Graziano M, Pagnussat G (2003) Nitric oxide: the versatility of an extensive signal molecule. Ann Rev Plant Biol 54:109–136

    CAS  Google Scholar 

  • Laxalt AM, García-Mata C, Lamattina L (2016) The dual role of nitric oxide in guard cells: promoting and attenuating the ABA and phospholipid-derived signals leading to the stomatal closure. Front Plant Sci 7:476

    PubMed  PubMed Central  Google Scholar 

  • Li X, Ma XG, He JM (2013) Stomatal bioassay in Arabidopsis leaves. Bio-protocol Bio Protoc 3:1–4

    Google Scholar 

  • Liu C, Zhao X, Yan J, Yuan Z, Gu M (2020) Effects of salt stress on growth, photosynthesis, and mineral nutrients of 18 pomegranate (Punica granatum) cultivars. Agronomy 10:27

    Google Scholar 

  • Liu X, Wang L, Liu L, Guo Y, Ren H (2011) Alleviating effect of exogenous nitric oxide in cucumber seedling against chilling stress. Afr J Biotechnol 10:4380–4386

    Google Scholar 

  • Luo ZB, Janz D, Jiang X, Goebel C, Wildhagen H, Tan Y, Rennenberg H, Feussner I, Polle A (2009) Upgrading root physiology for stress tolerance by ectomycorrhizas: insights from metabolite and transcriptional profiling into reprogramming for stress anticipation. Plant Physiol 151:1902–1917

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manai J, Kalai T, Gouia H, Corpas FJ (2014) Exogenous nitric oxide (NO) ameliorates salinity-induced oxidative stress in tomato (Solanum lycopersicum) plants. Journal of soil science and plant nutrition. J Soil Sci Plant Ntr 14:433–446

    Google Scholar 

  • Mao C, Zhu Y, Cheng H, Yan H, Zhao L, Tang J, Ma X, Mao P (2018) Nitric oxide regulates seedling growth and mitochondrial responses in aged oat seeds. Int J Mol Sci 9:1052

    Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    CAS  PubMed  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    CAS  Google Scholar 

  • Mohamed AA, Khan EA, Misra AN (2019) Mitigation effect of exogenous nitric oxide (NO) on some metabolic compounds of maize seedling grown under salt stress. J Phys Conf Ser 1294(5):052008

    CAS  Google Scholar 

  • Mostofa MG, Seraj ZI, Fujita M (2014) Exogenous sodium nitroprusside and glutathione alleviate copper toxicity by reducing copper uptake and oxidative damage in rice (Oryza sativa L.) seedlings. Protoplasma 251:1373–1386

    CAS  PubMed  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    CAS  PubMed  Google Scholar 

  • Mur LA, Mandon J, Persijn S, Cristescu SM, Moshkov IE, Novikova GV, Hall MA, Harren FJ, Hebelstrup KH, Gupta KJ (2013) Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plants. 5:052

    Google Scholar 

  • Nazar R, Iqbal N, Syeed S, Khan NA (2011) Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. J Plant Physiol 168:807–815

    CAS  PubMed  Google Scholar 

  • Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Ribeiro D, Wilson I (2008) Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot 59:165–176

    CAS  PubMed  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53:1237–1247

    CAS  PubMed  Google Scholar 

  • Nemati I, Moradi F, Gholizadeh S, Esmaeili MA, Bihamta MR (2011) The effect of salinity stress on ions and soluble sugars distribution in leaves, leaf sheaths and roots of rice (Oryza sativa L.) seedlings. Plant Soil Environ 57:26–33

    CAS  Google Scholar 

  • Özdemir F, Bor M, Demiral T, Türkan İ (2004) Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress. Plant growth Regul 42:203–211

    Google Scholar 

  • Pagnussat GC, Lanteri ML, Lamattina L (2003) Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process. Plant Physiol. https://doi.org/10.1104/pp.103.022228

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey S, Kumari A, Shree M, Kumar V, Singh P, Bharadwaj C, Loake GJ, Parida SK, Masakapalli SK, Gupta KJ (2019) Nitric oxide accelerates germination via the regulation of respiration in chickpea. J Exp Bot 70:4539–4555

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patterson BD, MacRae EA, Ferguson IB (1984) Estimation of hydrogen peroxide in plant extracts using titanium (IV). Anal Biochem Anal Biochem 139:487–492

    CAS  Google Scholar 

  • Pedroso MC, Magalhaes JR, Durzan D (2000) Nitric oxide induces cell death in Taxus cells. Plant Sci 157:173–180

    CAS  PubMed  Google Scholar 

  • Pompella AL, Maellaro E, Casini AF, Comporti M (1987) Histochemical detection of lipid peroxidation in the liver of bromobenzene-poisoned mice. Am J Pathol 129:295–301

    CAS  PubMed  PubMed Central  Google Scholar 

  • Procházková D, Haisel D, Wilhelmová N, Pavlíková D, Száková J (2013) Effects of exogenous nitric oxide on photosynthesis. Photosynthetica 51:483–489

    Google Scholar 

  • Rahneshan Z, Nasibi F, Moghadam AA (2018) Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks. J Plant Int 13:73–82

    CAS  Google Scholar 

  • Rasool S, Hameed A, Azooz MM, Siddiqi TO, Ahmad P (2013) Salt stress: causes, types and responses of plants. Ecophysiology and responses of plants under salt stress 2013. Springer, New York, pp 1–24

    Google Scholar 

  • Rattan A, Kapoor N, Kapoor D, Bhardwaj R (2017) Salinity induced damage overwhelmed by the treatment of brassinosteroids in Zea mays seedlings. Adv Biores 8:87–102

    CAS  Google Scholar 

  • Richards LA (1954) Diagnosis and improvement of saline and alkali soils. LWW

  • Rishi A, Sneha S (2013) Antioxidative defense against reactive oxygen species in plants under salt stress. Int J Curr Res 5:1622–1627

    CAS  Google Scholar 

  • Roe JH (1934) A colorimetric method for the determination of fructose in blood and urine. J Biol Chem 107:15–22

    CAS  Google Scholar 

  • Sadasivam S (1996) Biochemical methods. New Age International (p) Ltd Publisher, New Delhi, pp 179–186

    Google Scholar 

  • Sakihama Y, Murakami S, Yamasaki H (2003) Involvement of nitric oxide in the mechanism for stomatal opening in Vicia faba leaves. Biol Plant 46:117–119

    CAS  Google Scholar 

  • Sami F, Siddiqui H, Hayat S (2020) Nitric oxide-mediated enhancement in photosynthetic efficiency ion uptake and carbohydrate metabolism that boosts overall photosynthetic machinery in mustard plants. J Plant Growth Regulation. https://doi.org/10.1007/s00344-020-10166-5

    Article  Google Scholar 

  • Shabala S (2009) Salinity and programmed cell death: unravelling mechanisms for ion specific signalling. J Exp Bot 60:709–712

    CAS  PubMed  Google Scholar 

  • Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296

    CAS  PubMed  Google Scholar 

  • Sheokand S, Bhankar V, Sawhney V (2010) Ameliorative effect of exogenous nitric oxide on oxidative metabolism in NaCl treated chickpea plants. Braz J Plant Physiol 22:81–90

    Google Scholar 

  • Shi Q, Ding F, Wang X, Wei M (2007) Exogenous nitric oxide protect cucumber roots against oxidative stress induced by salt stress. Plant Physiol Biochem 45:542–550

    CAS  PubMed  Google Scholar 

  • Siddiqui MH, Alamri SA, Al-Khaishany MY, Al-Qutami MA, Ali HM, Hala AR, Kalaji HM (2017) Exogenous application of nitric oxide and spermidine reduces the negative effects of salt stress on tomato. HEB 58:537–547

    CAS  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Ali HM, Sakran AM, Basalah MO, AlKhaishany MY (2013) Mitigation of nickel stress by the exogenous application of salicylic acid and nitric oxide in wheat. Aust J Crop Sci 7:1780

    Google Scholar 

  • Singh N, Luthra R (1988) Sucrose metabolism and essential oil accumulation during lemongrass (Cymbopogon flexuosus Stapf.) leaf development. Plant Sci 57:127–133

    CAS  Google Scholar 

  • Šírová J, Sedlářová M, Piterková J, Luhová L, Petřivalský M (2011) The role of nitric oxide in the germination of plant seeds and pollen. Plant Sci 181:560–572

    PubMed  Google Scholar 

  • Smolinska B, Leszczynska J (2017) Photosynthetic pigments and peroxidase activity of Lepidium sativum L. during assisted Hg phytoextraction. Environ Sci Pollut Res 24:13384–13393

    CAS  Google Scholar 

  • Soliman M, Alhaithloul HA, Hakeem KR, Alharbi BM, El-Esawi M, Elkelish A (2019) Exogenous nitric oxide mitigates nickel-induced oxidative damage in eggplant by upregulating antioxidants, osmolyte metabolism, and glyoxalase systems. Plants 8:562

    CAS  PubMed Central  Google Scholar 

  • Solomonson LP, Barber MJ (1990) Assimilatory nitrate reductase: functional properties and regulation. Annu Rev Plant Physiol 41:225–253

    CAS  Google Scholar 

  • Thimmaiah SK (1999) Standard methods of biochemical analysis. Kalyani Publishers, New Delhi

    Google Scholar 

  • Thu TT, Yasui H, Yamakawa T (2017) Effects of salt stress on plant growth characteristics and mineral content in diverse rice genotypes. Soil Sci Plant Ntr 63:264–273

    CAS  Google Scholar 

  • Tian X, He M, Wang Z, Zhang J, Song Y, He Z, Dong Y (2015) Application of nitric oxide and calcium nitrate enhances tolerance of wheat seedlings to salt stress. Plant Growth Regul 77:343–356

    CAS  Google Scholar 

  • Usuda H (1985) The activation state of ribulose 1,5-bisphosphate carboxylase in maize leaves in dark and light. Plant Cell Physiol 26:1455–1463

    CAS  Google Scholar 

  • Vital RG, Müller C, da Silva FB, Batista PF, Merchant A, Fuentes D, Rodrigues AA, Costa AC (2019) Nitric oxide increases the physiological and biochemical stability of soybean plants under high temperature. Agronomy 9:412

    CAS  Google Scholar 

  • Wang H, Zhang M, Guo R, Shi D, Liu B, Lin X, Yang C (2012) Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (Oryza sativa L.). BMC Plant Biol 12:194

    PubMed  PubMed Central  Google Scholar 

  • Wang P, Du Y, Hou YJ, Zhao Y, Hsu CC, Yuan F, Zhu X, Tao WA, Song CP, Zhu JK (2015) Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1. Proc Natl Acad Sci USA 112:613–618

    CAS  PubMed  Google Scholar 

  • Wang Q, Liang X, Dong Y, Xu L, Zhang X, Hou J, Fan Z (2013) Effects of exogenous nitric oxide on cadmium toxicity, element contents and antioxidative system in perennial ryegrass. Plant Growth Regul 69:11–20

    CAS  Google Scholar 

  • Wani AS, Ahmad A, Hayat S, Fariduddin Q (2013) Salt-induced modulation in growth, photosynthesis and antioxidant system in two varieties of Brassica juncea. S J Biol Sci 20:183–193

    CAS  Google Scholar 

  • Whittaker A, Bochicchio A, Vazzana C, Lindsey G, Farrant J (2001) Changes in leaf hexokinase activity and metabolite levels in response to drying in the desiccation-tolerant species Sporobolus stapfianus and Xerophyta viscosa. J Exp Bot 52:961–969

    CAS  PubMed  Google Scholar 

  • Woodbury W, Spencer AK, Stahmann MA (1971) An improved procedure using ferricyanide for detecting catalase isozymes. Anal Biochem 44:301–305

    CAS  PubMed  Google Scholar 

  • Wu X, Zhu W, Zhang H, Ding H, Zhang HJ (2011) Exogenous nitric oxide protects against salt-induced oxidative stress in the leaves from two genotypes of tomato (Lycopersicom esculentum Mill.). Acta Physiol Plant 33:1199–1209

    CAS  Google Scholar 

  • Wu XX, Ding HD, Chen JL, Zhang HJ, Zhu WM (2010) Attenuation of salt-induced changes in photosynthesis by exogenous nitric oxide in tomato (Lycopersicon esculentum Mill. L.) seedlings. AJB 9:7837–7846

    CAS  Google Scholar 

  • Xu J, Wang W, Yin H, Liu X, Sun H, Mi Q (2010) Exogenous nitric oxide improves antioxidative capacity and reduces auxin degradation in roots of Medicago truncatula seedlings under cadmium stress. Plant Soil 326:321

    CAS  Google Scholar 

  • Yang Y, Guo Y (2018) Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol 217:523–539

    CAS  PubMed  Google Scholar 

  • Yi Z, Li S, Liang Y, Zhao H, Hou L, Yu S, Ahammed GJ (2018) Effects of exogenous spermidine and elevated CO2 on physiological and biochemical changes in tomato plants under iso-osmotic salt stress. J Plant Growth Regul 37(4):1222–1234

    CAS  Google Scholar 

  • Zaman MS, Ali GM, Muhammad A, Farooq K, Hussain I (2015) In vitro Screening of Salt Tolerance in Potato (Solanum tuberosum L.) Varieties. SJA 31(2):106–113

    Google Scholar 

  • Zhang M, Fang Y, Ji Y, Jiang Z, Wang L (2013) Effects of salt stress on ion content, antioxidant enzymes and protein profile in different tissues of Broussonetia papyrifera. South Afr J Bot 85:1–9

    Google Scholar 

  • Zhao J, Sun M, Hu D, Hao Y (2016) Molecular cloning and expression analysis of a hexokinase gene, MdHXK1 in Apple. Hort Plant J 2:67–74

    Google Scholar 

  • Zhao L, Zhang F, Guo J, Yang Y, Li B, Zhang L (2004) Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. Plant Physiol 134:849–857

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang P, Li S, Zhao P, Guo Z, Lu S (2019) Comparative physiological analysis reveals the role of NR-derived nitric oxide in the cold tolerance of forage legumes. Int J Mol 20(6):1368

    CAS  Google Scholar 

  • Zhang Y, Yao Q, Shi Y, Li X, Hou L, Xing G, Ahammed GJ (2020) Elevated CO2 improves antioxidant capacity, ion homeostasis, and polyamine metabolism in tomato seedlings under Ca(NO3)2-induced salt stress. Sci Hortic 273:109644

    CAS  Google Scholar 

  • Zheng C, Jiang D, Liu F, Dai T, Liu W, Jing Q, Cao W (2009) Exogenous nitric oxide improves seed germination in wheat against mitochondrial oxidative damage induced by high salinity. Environ Exp Bot 67:222–227

    CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the chairman, Department of Botany, Aligarh Muslim University (AMU), India for providing the necessary facilities to carry out the experiment and Fareen Sami also thanks to University Grant Commission, New Delhi, India for providing funds in the form of non-net fellowship.

Author information

Authors and Affiliations

Authors

Contributions

FS conducted the experiment and analyzed the respective data of experiment. HS helped with IRGA, microscopic studies, and Junior-PAM. PA and SH given the idea of work, drafted, and approved the final manuscript.

Corresponding author

Correspondence to Shamsul Hayat.

Ethics declarations

Conflict of interest

There is no conflict of interest among the author.

Additional information

Handling editor: Rhonda Peavy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sami, F., Siddiqui, H., Alam, P. et al. Nitric Oxide Mitigates the Salt-Induced Oxidative Damage in Mustard by UpRegulating the Activity of Various Enzymes. J Plant Growth Regul 40, 2409–2432 (2021). https://doi.org/10.1007/s00344-021-10331-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-021-10331-4

Keywords

Navigation