Skip to main content
Log in

Effect of implementing ecosystem functional type data in a mesoscale climate model

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

In this paper, we introduce a new concept of land-surface state representation for southern South America, which is based on “functional” attributes of vegetation, and implement a new land-cover (Ecosystem Functional Type, hereafter EFT) dataset in the Weather and Research Forecasting (WRF) model. We found that the EFT data enabled us to deal with functional attributes of vegetation and time-variant features more easily than the default land-cover data in the WRF. In order to explore the usefulness of the EFT data in simulations of surface and atmospheric variables, numerical simulations of the WRF model, using both the US Geological Survey (USGS) and the EFT data, were conducted over the La Plata Basin in South America for the austral spring of 1998 and compared with observations. Results showed that the model simulations were sensitive to the lower boundary conditions and that the use of the EFT data improved the climate simulation of 2-m temperature and precipitation, implying the need for this type of information to be included in numerical climate models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcaraz-Segura, D., J. M. Paruelo, H. E. Epstein, and J. Cabello, 2013: Environmental and human controls of ecosystem functional diversity in temperate South America. Remote Sensing, 5, 127–154.

    Article  Google Scholar 

  • Anderson, J. R., E. E. Hardy, J. T. Roach, and R. E. Witmer, 1976: A land use and land cover classification system for use with remote sensor data. U.S. Geological Survey Professional Paper 964, 28pp.

    Google Scholar 

  • Barlow, M., S. Nigam, and E. H. Berbery, 1998: Evolution of the North American monsoon system. J. Climate, 11, 2238–2257.

    Article  Google Scholar 

  • Berbery, E. H., and V. R. Barros, 2002: The hydrologic cycle of the La Plata basin in South America. J. Hydrometeorology, 3, 630–645.

    Article  Google Scholar 

  • Bluestein, H. B., 1993: Synoptic-Dynamic Meteorology in Midlatitudes. Vol. 2, Oxford University Press, 594pp.

    Google Scholar 

  • Brohan, P., J. J. Kennedy, I. Harris, S. F. B. Tett, and P. D. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: A new dataset from 1850. J. Geophys. Res., 111, D12106, doi: 10.1029/2005JD006548.

    Article  Google Scholar 

  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land-surface/ hydrology model with the Penn State/ NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Wea. Rev., 129, 569–585.

    Article  Google Scholar 

  • Collini, E. A, E. H. Berbery, V. R. Barros, and M. E. Pyle, 2008: How does soil moisture influence the early stages of the South American monsoon? J. Climate, 21, 195–213.

    Article  Google Scholar 

  • Doyle, M. E., and V. R. Barros, 2002: Midsummer low-level circulation and precipitation in subtropical South America and related sea surface temperature anomalies in the South Atlantic. J. Climate, 15, 3394–3410.

    Article  Google Scholar 

  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077–3107.

    Article  Google Scholar 

  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF singlemoment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129–151.

    Google Scholar 

  • Janjić, Z. I., 1990: The step-mountain coordinate: Physical package. Mon. Wea. Rev., 118, 1429–1443.

    Article  Google Scholar 

  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer and turbulence closure schemes. Mon. Wea. Rev., 122, 927–945.

    Article  Google Scholar 

  • Janjić, Z. I., 1996: The surface layer in the NCEP Eta Model. Preprints, Eleventh Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., 354–355.

    Google Scholar 

  • Janjić, Z. I., 2000: Comments on “Development and evaluation of a convection scheme for use in climate models”. J. Atmos. Sci., 57, 3686.

    Article  Google Scholar 

  • Janjić, Z. I., 2002: Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso model. NCEP Office Note, No. 437, 61 pp.

    Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437–471.

    Article  Google Scholar 

  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The tropical rainfall measuring mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809–817.

    Article  Google Scholar 

  • Kurkowski, N. P., D. J. Stensrud, and M. E. Baldwin, 2003: Assessment of implementing satellite-derived land cover data in the Eta model. Wea. Forecasting, 18, 404–416.

    Article  Google Scholar 

  • Labraga, J. C., O. Frumento, and M. Lopez, 2000: The atmospheric water vapor cycle in South America and the tropospheric circulation. J. Climate, 13, 1899–1915.

    Article  Google Scholar 

  • Lee, S.-J., 2010: Impact of land surface vegetation change over the La Plata Basin on the regional climatic environment: A study using conventional landcover/ land-use and newly developed ecosystem functional types. Ph.D. dissertation, University of Maryland, 153pp.

    Google Scholar 

  • Lee, S.-J., and E. H. Berbery, 2012: The impact of landuse and land-cover changes on the climate of the La Plata Basin. J. Hydrometeorology, 13, 84–102.

    Article  Google Scholar 

  • Loveland, T. R., and A. S. Belward, 1997: The IGBP-DIS global 1-km land cover data set, DISCover: First results. Int. J. Remote Sens., 18, 3291–3295.

    Article  Google Scholar 

  • Marengo, J. A., W. R. Soares, C. Saulo, and M. Nicolini, 2004: Climatology of the low-level jet east of the Andes as derived from the NCEP-NCAR reanalyses: Characteristics and temporal variability. J. Climate, 17, 2261–2280.

    Article  Google Scholar 

  • Michalakes, J., S. Chen, J. Dudhia, L. Hart, J. Klemp, J. Middlecoff, and W. Skamarock, 2001: Development of a Next Generation Regional Weather Research and Forecast Model. Developments in Teracomputing: Proc. the Ninth ECMWF Workshop on the Use of High Performance Computing in Meteorology, W. Zwieflhofer and N. Kreitz, Eds., World Scientific, 269–276.

    Chapter  Google Scholar 

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102(D14), 16663–16682.

    Article  Google Scholar 

  • Paruelo, J. M., E. G. Jobbagy, and O. E. Sala, 2001: Current distribution of ecosystem functional types in temperate South America. Ecosystems, 4, 683–698.

    Article  Google Scholar 

  • Yucel, I., 2006: Effects of implementing MODIS land cover and albedo in MM5 at two constrasting U.S. Regions. J. Hydrometeorology, 7, 1043–1060.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Jae Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, SJ., Berbery, E.H. & Alcaraz-Segura, D. Effect of implementing ecosystem functional type data in a mesoscale climate model. Adv. Atmos. Sci. 30, 1373–1386 (2013). https://doi.org/10.1007/s00376-012-2143-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-012-2143-3

Key words

Navigation