Skip to main content
Log in

Chemical and textural diversity of Kameni (Greece) dacites: role of vesiculation in juvenile and mature basal crystal masses

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Dacite lavas erupted from Kameni Islands volcanic centre (Greece) during the last 2000 years have a limited range in chemical composition (SiO2 = 64.0–68.5%) which contrasts with their wide range in plagioclase abundance (3–22%) and crystal size distributions. Most plagioclase crystals have simple zoning and occur independently or in loose clusters with finer-grained cores. We propose that magmatic diversity was produced by the interaction between crystals that formed at the base of a magma reservoir and bubbles produced by injection and vesiculation of more mafic magma. Two end-member situations can be identified: in juvenile systems, the basal crystal mass is loosely connected and readily disrupted by bubble formation. The crystal–bubble couples accumulate at the top of the reservoir, from where they can enter the sub-volcanic plumbing system to produce high-crystal content, chemically unevolved magmas. In the mature system, the crystal mass is well connected so bubbles displace the evolved, interstitial magma and liberate only a smaller number of crystals from the crystal mass. This process produces chemically evolved magmas, with lower crystal contents. The oldest lavas seem to have been produced from mature systems, whereas the youngest eruptions were of lavas produced from juvenile systems. This progression may reflect an overall reduction in repose times during the last 2000 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data will be provided in a data repository.

References

  • Barton M, Huijsmans JPP (1986) Post-caldera dacites from the Santorini volcanic complex, Aegean sea, Greece: an example of the eruption of lavas of near-constant composition over a 2,200 year period. Contrib Miner Petrol 94:472–495. https://doi.org/10.1007/BF00376340

    Article  Google Scholar 

  • Boudreau A (2016) Bubble migration in a compacting crystal-liquid mush. Contrib Miner Petrol 171(4):32. https://doi.org/10.1007/s00410-016-1237-9

    Article  Google Scholar 

  • Cashman KV (1993) Relationship between plagioclase crystallisation and cooling rate in basaltic melts. Contrib Miner Petrol 113:126–142. https://doi.org/10.1007/BF00320836

    Article  Google Scholar 

  • Cashman KV, Marsh BD (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallisation II. Makaopuhi lava lake. Contrib Miner Petrol 99:292–305. https://doi.org/10.1007/BF00375363

    Article  Google Scholar 

  • Druitt TH, Edwards L, Mellors RM, Pyle D, Sparks RSJ, Lanphere M, Davies M, Barreirio B (1999a) Santorini volcano. In: Memoir vol. 19. Geological Society, London, p 176

    Google Scholar 

  • Druitt TH, McCoy FW, Vougioukalakis GE (2019a) The Late Bronze Age eruption of Santorini volcano and Its impact on the ancient Mediterranean world. Elements 15(3):185–190. https://doi.org/10.2138/gselements.15.3.185

    Article  Google Scholar 

  • Druitt TH, Pyle DM, Mather TA (2019b) Santorini volcano and its plumbing system. Elements 15(3):177–184. https://doi.org/10.2138/gselements.15.3.177

    Article  Google Scholar 

  • Fornaciai A, Perinelli C, Armienti P, Favalli M (2015) Crystal size distributions of plagioclase in lavas from the July–August 2001 Mount Etna eruption. Bull Volcanol 77(8):1–15. https://doi.org/10.1007/s00445-015-0953-8

    Article  Google Scholar 

  • Francalanci L, Vougioukalakis G, Eleftheriadis G, Pinarelli L, Petrone C, Manetti P, Christofides G (1998) Petrographic, chemical and isotope variations in the intracaldera post-Minoan rocks of the Santorini volcanic field, Greece. In: Casale R (ed) Proceedings of the second workshop, Santorini, Greece, pp 175–186

  • Götze J, Schertl H-P, Neuser RD, Kempe U, Hanchar JM (2012) Optical microscope-cathodoluminescence (OM–CL) imaging as a powerful tool to reveal internal textures of minerals. Mineral Petrol 107(3):373–392. https://doi.org/10.1007/s00710-012-0256-0

    Article  Google Scholar 

  • Helz RT (1987) Differentiation behavior of Kilauea Iki lava lake, Kilauea Volcano, Hawaii; an overview of past and current work. Magmatic processes; physicochemical principles; a volume in honor of Hatten S Yoder, Jr, vol 1. Geochemical Society, Dayton, Ohio, pp 241–258

  • Higgins MD (1996a) Crystal size distributions and other quantitative textural measurements in lavas and tuff from Mt Taranaki (Egmont volcano), New Zealand. Bull Volcanol 58:194–204

    Article  Google Scholar 

  • Higgins MD (1996b) Magma dynamics beneath Kameni volcano, Thera, Greece, as revealed by crystal size and shape measurements. J Volcanol Geoth Res 70(1–2):37–48. https://doi.org/10.1016/0377-0273(95)00045-3

    Article  Google Scholar 

  • Higgins MD (2000) Measurement of crystal size distributions. Am Mineral 85(9):1105–1116. https://doi.org/10.2138/am-2000-8-901

    Article  Google Scholar 

  • Higgins MD (2006) Quantitative textural measurements in igneous and metamorphic petrology. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Higgins MD (2010a) Imaging birefringent minerals without extinction using circularly polarized light. Can Mineral 48(1):231–235. https://doi.org/10.3749/canmin.48.1.231

    Article  Google Scholar 

  • Higgins MD (2010b) Textural coarsening in igneous rocks. Intern Geol Rev 53(3–4):354–376. https://doi.org/10.1080/00206814.2010.496177

    Article  Google Scholar 

  • Higgins MD, Voos S, Vander Auwera J (2015) Magmatic processes under Quizapu volcano, Chile, identified from geochemical and textural studies. Contrib Miner Petrol 170(5–6):1–16. https://doi.org/10.1007/s00410-015-1209-5

    Article  Google Scholar 

  • Hooft EEE, Heath BA, Toomey DR, Paulatto M, Papazachos CB, Nomikou P, Morgan JV, Warner MR (2019) Seismic imaging of Santorini: subsurface constraints on caldera collapse and present-day magma recharge. Earth Planet Sci Lett 514:48–61. https://doi.org/10.1016/j.epsl.2019.02.033

    Article  Google Scholar 

  • Huijsmans JPP (1985) Calc-alkaline lavas from the volcanic complex of Santorini, Aegean Sea, Greece: a petrological, geochemical and stratigraphic study. Geologica Ultraiectina 41:1–316

    Google Scholar 

  • Le Maitre RW, Streckeisen A, Zanettin B, Le Bas MJ, Bonin B, Bateman P, Bellieni G, Dudek A, Efremova S, Keller J, Lameyre J, Sabine PA, Schmid R, Sorensen H, Woolley AR (2002) Igneous rocks : a classification and glossary of terms: recommendations of the International Union of Geological Sciences subcommission on the systematics of igneous rocks. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Marsh BD (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization I. Theory. Contrib Miner Pet 99:277–291. https://doi.org/10.1007/BF00375362

    Article  Google Scholar 

  • Martin VM (2005) Geochemical and textural analysis of mafic enclaves from Nea Kameni, Santorini, Greece. PhD Thesis, University of Cambridge

  • Martin VM, Holness MB, Pyle DM (2006) Textural analysis of magmatic enclaves from the Kameni Islands, Santorini, Greece. J Volcanol Geoth Res 154(1–2):89–102. https://doi.org/10.1016/j.jvolgeores.2005.09.021

    Article  Google Scholar 

  • Martin VM, Morgan DJ, Jerram DA, Caddick MJ, Prior DJ, Davidson JP (2008) Bang! month-scale eruption triggering at Santorini volcano. Science 321(5893):1178. https://doi.org/10.1126/science.1159584

    Article  Google Scholar 

  • McVey BG, Hooft EEE, Heath BA, Toomey DR, Paulatto M, Morgan JV, Nomikou P, Papazachos CB (2019) Magma accumulation beneath Santorini volcano, Greece, from P-wave tomography. Geology 48(3):231–235. https://doi.org/10.1130/g47127.1

    Article  Google Scholar 

  • Mills RD, Glazner AF (2013) Experimental study on the effects of temperature cycling on coarsening of plagioclase and olivine in an alkali basalt. Contrib Miner Petrol 166(1):97–111. https://doi.org/10.1007/s00410-013-0867-4

    Article  Google Scholar 

  • Mora CI, Ramseyer K (1992) Cathodoluminescence of coexisting plagioclases, boehls butte anorthosite-Cl activators and fluid-flow paths. Am Mineral 77(11–12):1258–1265

    Google Scholar 

  • Mungall JE (2015) Physical Controls of Nucleation, Growth and Migration of Vapor Bubbles in Partially Molten Cumulates. In: Charlier B, Namur O, Latypov R, Tegner C (eds) Layered Intrusions. Springer, Dordrecht, pp 331–377

    Chapter  Google Scholar 

  • Newman AV, Stiros S, Feng L, Psimoulis S, Moschas S, Saltogianni V, Jiang Y, Papazachos C, Karaginni E, Vamvakaris D (2012) Recent geodetic unrest at Santorini Caldera, Greece. Geophys Res Lett. https://doi.org/10.1029/2012gl051286

    Article  Google Scholar 

  • Nicholls IA (1971) Petrology of Santorini Volcano, Cyclades. Greece J Petrol 12(1):67–119. https://doi.org/10.1093/petrology/12.1.67

    Article  Google Scholar 

  • Nomikou P, Parks MM, Papanikolaou D, Pyle DM, Mather TA, Carey S, Watts AB, Paulatto M, Kalnins ML, Livanos I, Bejelou K, Simou E, Perros I (2014) The emergence and growth of a submarine volcano: The Kameni islands, Santorini (Greece). GeoResJ 1-2(Supplement C):8-18 doi:https://doi.org/10.1016/j.grj.2014.02.002

  • Pagel M, Barbin V, Blanc P, Ohnenstetter D (2000) Cathodoluminescence in geosciences. Springer, Berlin

    Book  Google Scholar 

  • Parks MM, Biggs J, England P, Mather TA, Nomikou P, Palamartchouk K, Papanikolaou X, Paradissis D, Parsons B, Pyle DM, Raptakis C, Zacharis V (2012) Evolution of Santorini volcano dominated by episodic and rapid fluxes of melt from depth. Nat Geosci 5(10):749–754. https://doi.org/10.1038/ngeo1562

    Article  Google Scholar 

  • Parks MM, Moore JDP, Papanikolaou X, Biggs J, Mather TA, Pyle DM, Raptakis C, Paradissis D, Hooper A, Parsons B, Nomikou P (2015) From quiescence to unrest: 20 years of satellite geodetic measurements at Santorini volcano, Greece. J Geophys Res Solid Earth 120(2):1309–1328. https://doi.org/10.1002/2014JB011540

    Article  Google Scholar 

  • Petrone C, Francalanci L, Vougioukalakis G (2013) Mixing, mingling and enclave crumbling in the post-Minoan dacitic magmas of Santorini volcano, Greece. In: Goldschmidt 2013 conference proceedings

  • Pleše P, Higgins MD, Baker DR, Kudrna Prašek M (2019) Nucleation and growth of bubbles on plagioclase crystals during experimental decompression degassing of andesitic melts. J Volcanol Geoth Res 388:106679. https://doi.org/10.1016/j.jvolgeores.2019.106679

    Article  Google Scholar 

  • Pleše P, Higgins MD, Mancini L, Lanzafame G, Brun F, Fife JL, Casselman J, Baker DR (2018) Dynamic observations of vesiculation reveal the role of silicate crystals in bubble nucleation and growth in andesitic magmas. Lithos 296–299:532–546. https://doi.org/10.1016/j.lithos.2017.11.024

    Article  Google Scholar 

  • Pyle DM (2017) What Can We Learn from Records of Past Eruptions to Better Prepare for the Future? In: Fearnley CJ, Bird DK, Haynes K, McGuire WJ, Jolly G (eds) Observing the volcano world. Springer, Heidelberg, pp 1–18

    Google Scholar 

  • Rasband WS (2010) ImageJ. U. S. National Institutes of Health, Bethesda, Maryland, USA http://rsb.info.nih.gov/ij/

  • Rizzo AL, Barberi F, Carapezza ML, Di Piazza A, Francalanci L, Sortino F, D’Alessandro W (2015) New mafic magma refilling a quiescent volcano: evidence from He-Ne-Ar isotopes during the 2011–2012 unrest at Santorini, Greece. Geochem Geophys Geosyst 16(3):798–814. https://doi.org/10.1002/2014gc005653

    Article  Google Scholar 

  • Ruprecht P, Simon AC, Fiege A (2020) The Survival of Mafic Magmatic Enclaves and the Timing of Magma Recharge. Geophysical Research Letters 47(14):e2020GL087186 doi:https://doi.org/https://doi.org/10.1029/2020GL087186

  • Sigurdsson H, Carey S, Alexandri M, Vougioukalakis G, Croff K, Roman C, Sakellariou D, Anagnostou C, Rousakis G, Ioakim C, Goguo A, Ballas D, Misaridis T, Nomikou P (2006) Marine investigations of Greece’s Santorini volcanic field. Eos, Transactions American Geophysical Union 87(34):337–342. https://doi.org/10.1029/2006eo340001

    Article  Google Scholar 

  • Stamatelopoulou-Seymour K, Vlassopoulos D, Pearce TH, Rice C (1990) The record of magma chamber processes in plagioclase phenocrysts at Thera volcano, Aegean volcanic arc, Greece. Contrib Miner Petrol 104:73–84. https://doi.org/10.1007/BF00310647

    Article  Google Scholar 

  • Theodorakopoulou K, Kyriakopoulos K, Athanassas CD, Galanopoulos E, Economou G, Maniatis Y, Godelitsas A, Dotsika E, Mavridis F, Darlas A (2020) First Speleothem Evidence of the Hiera Eruption (197 BC), Santorini, Greece. Environmental Archaeology:1-13 doi:https://doi.org/10.1080/14614103.2020.1755196

  • Vougioukalakis GE, Fytikas M (2005) Volcanic hazards in the Aegean area, relative risk evaluation, monitoring and present state of the active volcanic centers. In: Fytikas M, Vougioukalakis GE (eds) The South Aegean active volcanic arc-present knowledge and future perspectives, milos conferences, vol 7. Elsevier, Greece, pp 161–183

    Chapter  Google Scholar 

  • Watts AB, Nomikou P, Moore JDP, Parks MM, Alexandri M (2015) Historical bathymetric charts and the evolution of Santorini submarine volcano. Greece Geochem Geophys Geosyst 16(3):847–869. https://doi.org/10.1002/2014gc005679

    Article  Google Scholar 

  • Zellmer G, Turner S, Hawkesworth C (2000) Timescales of destructive plate margin magmatism; new insights from Santorini, Aegean volcanic arc. Earth Planet Sci Lett 174(3–4):265–281. https://doi.org/10.1016/S0012-821X(99)00266-6

    Article  Google Scholar 

  • Zellmer GF, Blake S, Vance D, Hawkesworth C, Turner S (1999) Plagioclase residence times at two island arc volcanoes (Kameni Islands, Santorini, and Soufriere, St. Vincent) determined by Sr diffusion systematics. Contributions to Mineralogy and Petrology 136(4):345-357 doi:https://doi.org/10.1007/s004100050543

Download references

Acknowledgements

We would like to thank Steve Carey for supplying the underwater samples. Pantelia Sorotou gave us tremendous help on the islands. We would like to thank the Santorini Union of Boatman for their help with access to the islands, particularly Mr Thanasis who landed us in difficult spots. Comments of anonymous reviewers considerably improved the manuscript.

Funding

MDH-Natural Sciences and Engineering Research Council (Canada); JVA-Fonds de la Recherche Scientifique (Belgium).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Higgins.

Ethics declarations

Conflict of interest

None.

Additional information

Communicated by Timothy L. Grove.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Higgins, M.D., Debecq, A., Vander Auwera, J. et al. Chemical and textural diversity of Kameni (Greece) dacites: role of vesiculation in juvenile and mature basal crystal masses. Contrib Mineral Petrol 176, 13 (2021). https://doi.org/10.1007/s00410-020-01764-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-020-01764-3

Keywords

Navigation