Skip to main content

Advertisement

Log in

Cavβ2 transcription start site variants modulate calcium handling in newborn rat cardiomyocytes

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

In the heart, the main pathway for calcium influx is mediated by L-type calcium channels, a multi-subunit complex composed of the pore-forming subunit CaV1.2 and the auxiliary subunits CaVα2δ1 and CaVβ2. To date, five distinct CaVβ2 transcriptional start site (TSS) variants (CaVβ2a-e) varying only in the composition and length of the N-terminal domain have been described, each of them granting distinct biophysical properties to the L-type current. However, the physiological role of these variants in Ca2+ handling in the native tissue has not been explored. Our results show that four of these variants are present in neonatal rat cardiomyocytes. The contribution of those CaVβ2 TSS variants on endogenous L-type current and Ca2+ handling was explored by adenoviral-mediated overexpression of each CaVβ2 variant in cultured newborn rat cardiomyocytes. As expected, all CaVβ2 TSS variants increased L-type current density and produced distinctive changes on L-type calcium channel (LTCC) current activation and inactivation kinetics. The characteristics of the induced calcium transients were dependent on the TSS variant overexpressed. Moreover, the amplitude of the calcium transients varied depending on the subunit involved, being higher in cardiomyocytes transduced with CaVβ2a and smaller in CaVβ2d. Interestingly, the contribution of Ca2+ influx and Ca2+ release on total calcium transients, as well as the sarcoplasmic calcium content, was found to be TSS-variant-dependent. Remarkably, determination of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) messenger RNA (mRNA) abundance and cell size change indicates that CaVβ2 TSS variants modulate the cardiomyocyte hypertrophic state. In summary, we demonstrate that expression of individual CaVβ2 TSS variants regulates calcium handling in cardiomyocytes and, consequently, has significant repercussion in the development of hypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Altier C, Garcia-Caballero A, Simms B, You H, Chen L, Walcher J, Tedford HW, Hermosilla T, Zamponi GW (2011) The Cavbeta subunit prevents RFP2-mediated ubiquitination and proteasomal degradation of L-type channels. Nat Neurosci 14:173–180. doi:10.1038/nn.2712

    Article  CAS  PubMed  Google Scholar 

  2. Benitah JP, Alvarez JL, Gomez AM (2010) L-type Ca(2+) current in ventricular cardiomyocytes. J Mol Cell Cardiol 48:26–36. doi:10.1016/j.yjmcc.2009.07.026

    Article  CAS  PubMed  Google Scholar 

  3. Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–205. doi:10.1038/415198a

    Article  CAS  PubMed  Google Scholar 

  4. Bers DM (2006) Altered cardiac myocyte Ca regulation in heart failure. Physiology 21:380–387. doi:10.1152/physiol.00019.2006

    Article  CAS  PubMed  Google Scholar 

  5. Buraei Z, Yang J (2010) The beta subunit of voltage-gated Ca2+ channels. Physiol Rev 90:1461–1506. doi:10.1152/physrev.00057.2009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Cingolani E, Ramirez Correa GA, Kizana E, Murata M, Cho HC, Marban E (2007) Gene therapy to inhibit the calcium channel beta subunit: physiological consequences and pathophysiological effects in models of cardiac hypertrophy. Circ Res 101:166–175. doi:10.1161/CIRCRESAHA.107.155721

    Article  CAS  PubMed  Google Scholar 

  7. Colecraft HM, Alseikhan B, Takahashi SX, Chaudhuri D, Mittman S, Yegnasubramanian V, Alvania RS, Johns DC, Marban E, Yue DT (2002) Novel functional properties of Ca(2+) channel beta subunits revealed by their expression in adult rat heart cells. J Physiol 541:435–452

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Chen X, Nakayama H, Zhang X, Ai X, Harris DM, Tang M, Zhang H, Szeto C, Stockbower K, Berretta RM, Eckhart AD, Koch WJ, Molkentin JD, Houser SR (2011) Calcium influx through Cav1.2 is a proximal signal for pathological cardiomyocyte hypertrophy. J Mol Cell Cardiol 50:460–470. doi:10.1016/j.yjmcc.2010.11.012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Chen X, Piacentino V 3rd, Furukawa S, Goldman B, Margulies KB, Houser SR (2002) L-type Ca2+ channel density and regulation are altered in failing human ventricular myocytes and recover after support with mechanical assist devices. Circ Res 91:517–524

    Article  CAS  PubMed  Google Scholar 

  10. Chen X, Zhang X, Kubo H, Harris DM, Mills GD, Moyer J, Berretta R, Potts ST, Marsh JD, Houser SR (2005) Ca2+ influx-induced sarcoplasmic reticulum Ca2+ overload causes mitochondrial-dependent apoptosis in ventricular myocytes. Circ Res 97:1009–1017. doi:10.1161/01.RES.0000189270.72915.D1

    Article  CAS  PubMed  Google Scholar 

  11. Chu PJ, Larsen JK, Chen CC, Best PM (2004) Distribution and relative expression levels of calcium channel beta subunits within the chambers of the rat heart. J Mol Cell Cardiol 36:423–434. doi:10.1016/j.yjmcc.2003.12.012

    Article  CAS  PubMed  Google Scholar 

  12. Dobrev D, Voigt N, Wehrens XH (2011) The ryanodine receptor channel as a molecular motif in atrial fibrillation: pathophysiological and therapeutic implications. Cardiovasc Res 89:734–743. doi:10.1093/cvr/cvq324

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Escobar AL, Ribeiro-Costa R, Villalba-Galea C, Zoghbi ME, Perez CG, Mejia-Alvarez R (2004) Developmental changes of intracellular Ca2+ transients in beating rat hearts. Am J Physiol Heart Circ Physiol 286:H971–H978. doi:10.1152/ajpheart.00308.2003

    Article  CAS  PubMed  Google Scholar 

  14. Fabiato A (1983) Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol 245:C1–C14

    CAS  PubMed  Google Scholar 

  15. Fang K, Colecraft HM (2011) Mechanism of auxiliary beta-subunit-mediated membrane targeting of L-type (Ca(V)1.2) channels. J Physiol 589:4437–4455. doi:10.1113/jphysiol.2011.214247

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Fatkin D, McConnell BK, Mudd JO, Semsarian C, Moskowitz IG, Schoen FJ, Giewat M, Seidman CE, Seidman JG (2000) An abnormal Ca(2+) response in mutant sarcomere protein-mediated familial hypertrophic cardiomyopathy. J Clin Invest 106:1351–1359. doi:10.1172/JCI11093

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Foell JD, Balijepalli RC, Delisle BP, Yunker AM, Robia SL, Walker JW, McEnery MW, January CT, Kamp TJ (2004) Molecular heterogeneity of calcium channel beta-subunits in canine and human heart: evidence for differential subcellular localization. Physiol Genomics 17:183–200. doi:10.1152/physiolgenomics.00207.2003

    Article  CAS  PubMed  Google Scholar 

  18. Goonasekera SA, Hammer K, Auger-Messier M, Bodi I, Chen X, Zhang H, Reiken S, Elrod JW, Correll RN, York AJ, Sargent MA, Hofmann F, Moosmang S, Marks AR, Houser SR, Bers DM, Molkentin JD (2012) Decreased cardiac L-type Ca(2)(+) channel activity induces hypertrophy and heart failure in mice. J Clin Invest 122:280–290. doi:10.1172/JCI58227

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Haase H, Pfitzmaier B, McEnery MW, Morano I (2000) Expression of Ca(2+) channel subunits during cardiac ontogeny in mice and rats: identification of fetal alpha(1C) and beta subunit isoforms. J Cell Biochem 76:695–703

    Article  CAS  PubMed  Google Scholar 

  20. Harary I, Farley B (1960) In vitro studies of single isolated beating heart cells. Science 131:1674–1675

    Article  CAS  PubMed  Google Scholar 

  21. Hermosilla T, Moreno C, Itfinca M, Altier C, Armisen R, Stutzin A, Zamponi GW, Varela D (2011) L-type calcium channel beta subunit modulates angiotensin II responses in cardiomyocytes. Channels 5:280–286

    Article  CAS  PubMed  Google Scholar 

  22. Herzig S, Khan IF, Grundemann D, Matthes J, Ludwig A, Michels G, Hoppe UC, Chaudhuri D, Schwartz A, Yue DT, Hullin R (2007) Mechanism of Ca(v)1.2 channel modulation by the amino terminus of cardiac beta2-subunits. FASEB J Off Publ Fed Am Soc Exp Biol 21:1527–1538. doi:10.1096/fj.06-7377com

    CAS  Google Scholar 

  23. Hullin R, Khan IF, Wirtz S, Mohacsi P, Varadi G, Schwartz A, Herzig S (2003) Cardiac L-type calcium channel beta-subunits expressed in human heart have differential effects on single channel characteristics. J Biol Chem 278:21623–21630. doi:10.1074/jbc.M211164200

    Article  CAS  PubMed  Google Scholar 

  24. Hullin R, Matthes J, von Vietinghoff S, Bodi I, Rubio M, D'Souza K, Friedrich Khan I, Rottlander D, Hoppe UC, Mohacsi P, Schmitteckert E, Gilsbach R, Bunemann M, Hein L, Schwartz A, Herzig S (2007) Increased expression of the auxiliary beta(2)-subunit of ventricular L-type Ca(2) + channels leads to single-channel activity characteristic of heart failure. PLoS One 2, e292. doi:10.1371/journal.pone.0000292

    Article  PubMed Central  PubMed  Google Scholar 

  25. Link S, Meissner M, Held B, Beck A, Weissgerber P, Freichel M, Flockerzi V (2009) Diversity and developmental expression of L-type calcium channel beta2 proteins and their influence on calcium current in murine heart. J Biol Chem 284:30129–30137. doi:10.1074/jbc.M109.045583

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Miranda-Laferte E, Ewers D, Guzman RE, Jordan N, Schmidt S, Hidalgo P (2014) The N-terminal domain tethers the voltage-gated calcium channel beta2e-subunit to the plasma membrane via electrostatic and hydrophobic interactions. J Biol Chem 289:10387–10398. doi:10.1074/jbc.M113.507244

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Poindexter BJ, Smith JR, Buja LM, Bick RJ (2001) Calcium signaling mechanisms in dedifferentiated cardiac myocytes: comparison with neonatal and adult cardiomyocytes. Cell Calcium 30:373–382. doi:10.1054/ceca.2001.0249

    Article  CAS  PubMed  Google Scholar 

  29. Schroder F, Handrock R, Beuckelmann DJ, Hirt S, Hullin R, Priebe L, Schwinger RH, Weil J, Herzig S (1998) Increased availability and open probability of single L-type calcium channels from failing compared with nonfailing human ventricle. Circulation 98:969–976

    Article  CAS  PubMed  Google Scholar 

  30. Semsarian C, Ahmad I, Giewat M, Georgakopoulos D, Schmitt JP, McConnell BK, Reiken S, Mende U, Marks AR, Kass DA, Seidman CE, Seidman JG (2002) The L-type calcium channel inhibitor diltiazem prevents cardiomyopathy in a mouse model. J Clin Invest 109:1013–1020. doi:10.1172/JCI14677

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Shannon TR, Bers DM (2004) Integrated Ca2+ management in cardiac myocytes. Ann N Y Acad Sci 1015:28–38. doi:10.1196/annals.1302.003

    Article  CAS  PubMed  Google Scholar 

  32. Simms BA, Zamponi GW (2012) Trafficking and stability of voltage-gated calcium channels. Cell Mol Life Sci CMLS 69:843–856. doi:10.1007/s00018-011-0843-y

    Article  CAS  PubMed  Google Scholar 

  33. Song LS, Guia A, Muth JN, Rubio M, Wang SQ, Xiao RP, Josephson IR, Lakatta EG, Schwartz A, Cheng H (2002) Ca(2+) signaling in cardiac myocytes overexpressing the alpha(1) subunit of L-type Ca(2+) channel. Circ Res 90:174–181

    Article  CAS  PubMed  Google Scholar 

  34. Takahashi SX, Mittman S, Colecraft HM (2003) Distinctive modulatory effects of five human auxiliary beta2 subunit splice variants on L-type calcium channel gating. Biophys J 84:3007–3021. doi:10.1016/S0006-3495(03)70027-7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Tandan S, Wang Y, Wang TT, Jiang N, Hall DD, Hell JW, Luo X, Rothermel BA, Hill JA (2009) Physical and functional interaction between calcineurin and the cardiac L-type Ca2+ channel. Circ Res 105:51–60. doi:10.1161/CIRCRESAHA.109.199828

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Van Petegem F, Clark KA, Chatelain FC, Minor DL Jr (2004) Structure of a complex between a voltage-gated calcium channel beta-subunit and an alpha-subunit domain. Nature 429:671–675. doi:10.1038/nature02588

    Article  PubMed Central  PubMed  Google Scholar 

  37. Varela D, Niemeyer MI, Cid LP, Sepulveda FV (2002) Effect of an N-terminus deletion on voltage-dependent gating of the ClC-2 chloride channel. J Physiol 544:363–372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Voigt N, Li N, Wang Q, Wang W, Trafford AW, Abu-Taha I, Sun Q, Wieland T, Ravens U, Nattel S, Wehrens XH, Dobrev D (2012) Enhanced sarcoplasmic reticulum Ca2+ leak and increased Na + -Ca2+ exchanger function underlie delayed afterdepolarizations in patients with chronic atrial fibrillation. Circulation 125:2059–2070. doi:10.1161/CIRCULATIONAHA.111.067306

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are thankful to Rocio K. Finol-Urdaneta, Andrés Stutzin, and Luis Michea for constructive discussion to the manuscript. This work was supported by research grants from Fondo Nacional de Desarrollo Científico y Tecnológico (Fondecyt) 1120240 to DV, and Fondecyt 1121078 and Millennium Institute on Immunology and Immunotherapy P09-016-F to FS.

Author’s contributions

D.V. and T.H. designed the project. C.M., T.H., L.T-D., D.M., M.E., P.D., D.S., and D.V. performed the experiments. D.V., T.H., and F.S. analyzed the data. D.V. wrote the manuscript.

Conflict of interest

The authors declare no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Varela.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MPG 1939 kb)

(MPG 1881 kb)

(MPG 1926 kb)

(MPG 1972 kb)

Supplemental Fig. S1

(GIF 36 kb)

High Resolution Image (TIFF 232773 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreno, C., Hermosilla, T., Morales, D. et al. Cavβ2 transcription start site variants modulate calcium handling in newborn rat cardiomyocytes. Pflugers Arch - Eur J Physiol 467, 2473–2484 (2015). https://doi.org/10.1007/s00424-015-1723-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-015-1723-3

Keywords

Navigation