Skip to main content

Advertisement

Log in

Influence of Kv11.1 (hERG1) K+ channel expression on DNA damage induced by the genotoxic agent methyl methanesulfonate

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Besides their crucial role in cell electrogenesis and maintenance of basal membrane potential, the voltage-dependent K+ channel Kv11.1/hERG1 shows an essential impact in cell proliferation and other processes linked to the maintenance of tumour phenotype. To check the possible influence of channel expression on DNA damage responses, HEK293 cells, treated with the genotoxic agent methyl methanesulfonate (MMS), were compared with those of a HEK-derived cell line (H36), permanently transfected with the Kv11.1-encoding gene, and with a third cell line (T2) obtained under identical conditions as H36, by permanent transfection of another unrelated plasma membrane protein encoding gene. In addition, to gain some insights about the canonical/conduction-dependent channel mechanisms that might be involved, the specific erg channel inhibitor E4031 was used as a tool. Our results indicate that the expression of Kv11.1 does not influence MMS-induced changes in cell cycle progression, because no differences were found between H36 and T2 cells. However, the canonical ion conduction function of the channel appeared to be associated with decreased cell viability at low/medium MMS concentrations. Moreover, direct DNA damage measurements, using the comet assay, demonstrated for the first time that Kv11.1 conduction activity was able to modify MMS-induced DNA damage, decreasing it particularly at high MMS concentration, in a way related to PARP1 gene expression. Finally, our data suggest that the canonical Kv11.1 effects may be relevant for tumour cell responses to anti-tumour therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Afrasiabi E, Hietamäki M, Viitanen T, Sukumaran P, Bergelin N, Törnquist K (2010) Expression and significance of HERG (KCNH2) potassium channels in the regulation of MDA-MB-435S melanoma cell proliferation and migration. Cell Signal 22:57–64. https://doi.org/10.1016/j.cellsig.2009.09.010

    Article  CAS  PubMed  Google Scholar 

  2. Arcangeli A, Becchetti A (2016) hERG channels: from antitargets to novel targets for cancer therapy. Clin Cancer Res 23:3–5. https://doi.org/10.1158/1078-0432

    Article  PubMed  Google Scholar 

  3. Arcangeli A, Crociani O, Lastraioli, Masi EA, Pillozzi S, Becchetti A (2009) Targeting ion channels in cancer: a novel frontier in antineoplastic therapy. Curr Med Chem 16:66–93. https://doi.org/10.2174/092986709787002835

    Article  CAS  PubMed  Google Scholar 

  4. Azqueta A, Ladeira C, Giovannelli L, Boutet-Robinet E, Bonassi S, Nerig M, Gajski G, Duthie S, Del Bo C, Riso P, Koppen G, Basaran N, Collins A, Møller P (2020) Application of the comet assay in human biomonitoring: An hCOMET perspective. Mutat Res 783:108288. https://doi.org/10.1016/j.mrrev.2019.108288

    Article  CAS  PubMed  Google Scholar 

  5. Barros F, de la Peña P, Domínguez, Sierra LM, Pardo LA (2020) The EAG voltage-Dependent K+ channel subfamily: similarities and differences in structural organization and gating. Front Pharmacol 11:411. https://doi.org/10.3389/fphar.2020.00411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Barros F, Pardo LA, Domínguez, Sierra LM, de la Peña P (2019) New structures and gating of voltage-dependent poassium (Kv) channels and their relatives: a multi-domain and dynamic question. Int J Mol Sci 20:248. https://doi.org/10.3390/ijms20020248

    Article  CAS  PubMed Central  Google Scholar 

  7. Becchetti A (2011) Ion channels and transporters in cancer. 1. Ion channels and cell proliferation in cancer. Am J Physiol Cell Physiol 301:C255–C265. https://doi.org/10.1152/ajpcell.00047.2011

    Article  CAS  PubMed  Google Scholar 

  8. Becchetti A, Crescioli S, Zanieri F, Petroni G, Mercatelli R, Coppola S, Gasparoli L, D'Amico M, Pillozzi S, Crociani O, Stefanini M, Fiore A, Carraresi L, Morello V, Manoli S, Brizzi MF, Ricci D, Rinaldi M, Masi A, Schmidt T, Quercioli F, Defilippi P, Arcangeli A (2017) The conformational state of hERG1 channels determines integrin association, downstream signaling, and cancer progression. Sci Signal 10:eaaf3236. https://doi.org/10.1126/scisignal.aaf3236

  9. Beranek DT (1990) Distribution of methyl and ethyl adducts following alkylation with monofunctional alkylating agents. Mutat Res 231:11–30. https://doi.org/10.1016/0027-5107(90)90173-2

    Article  CAS  PubMed  Google Scholar 

  10. Bolognesi C, Cirillo S, Chipman JK (2019) Comet assay in ecogenotoxicology: Applications in Mytilus sp. Mutat Res 842:50–59. https://doi.org/10.1016/j.mrgentox.2019.05.004

    Article  CAS  PubMed  Google Scholar 

  11. Brackenbury WJ (2016) Ion channels in cancer. In: Ion channels in health and disease. Pitt G (ed) Health and Disease, 1st edn. Academic Press, pp. 131-163. https://doi.org/10.1016/B978-0-12-802002-9.00006-6

  12. Carretero L, Barros F, Miranda M, Fernández-Trillo J, Machín A, de la Peña P, Domínguez P (2012) Cell type influences the molecular mechanisms involved in hormonal regulation of ERG K+ channels. Pflugers Arch - Eur J Physiol 463:685–702. https://doi.org/10.1007/s00424-012-1094-y

    Article  CAS  Google Scholar 

  13. Chen SZ, Jiang M, Zhen YS (2005) HERG K+ channel expression-related chemosensitivity in cancer cells and its modulation by erythromycin. Cancer Chemother Pharmacol 56:212–220. https://doi.org/10.1007/s00280-004-0960-5

    Article  CAS  PubMed  Google Scholar 

  14. Clewell RA, SunB AY, Carmichael P, Efremenko A, McMullen PD, Pendse S, Trask OJ, White A, Andersen ME (2014) Profiling dose-dependent activation of p53-mediated signaling pathways by chemicals with distinct mechanisms of DNA damage. Toxicol Sci 142(2014):56–73. https://doi.org/10.1093/toxsci/kfu153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Collins AR (2004) The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol 26:249–261. https://doi.org/10.1385/MB:26:3:249

    Article  CAS  PubMed  Google Scholar 

  16. Collins AR, Azqueta A, Brunborg G, Gaivão I, Giovannelli L, Kruszewski M, Smith CC, Stetina R (2008) The comet assay: topical issues. Mutagenesis 23:143–151. https://doi.org/10.1093/mutage/gem051

    Article  CAS  PubMed  Google Scholar 

  17. Comes N, Serrano-Albarrás A, Capera J, Serrano-Novillo C, Condom E, Ramón y Cajal S, Ferreres JC, Felipe A (2015) Involvement of potassium channels in the progression of cancer to a more malignant phenotype. Biochim Biophys Acta 1848:2477–2492. https://doi.org/10.1016/j.bbamem.2014.12.008

    Article  CAS  PubMed  Google Scholar 

  18. Crociani O, Zanieri F, Pillozzi S, Lastraioli E, Stefanini M, Fiore A, Fortunato A, D’Amico M, Masselli M, De Lorenzo E, Gasparoli L, Chiu M, Bussolati O, Becchetti A, Arcangeli A (2013) hERG1 channels modulate integrin signaling to trigger angiogenesis and tumor progression in colorectal cancer. Sci Rep 3:3308. https://doi.org/10.1038/srep03308

    Article  PubMed  PubMed Central  Google Scholar 

  19. de la Peña P, Delgado LM, del Camino D, Barros F (1992) Cloning and expression of the thyrotropin-releasing hormone receptor from GH3 rat anterior pituitary cells. Biochem J 284:891–899. https://doi.org/10.1042/bj2840891

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dhawan A, Bajpayee M, Parmar D (2009) Comet assay: a reliable tool for the assessment of DNA damage in different models. Cell Biol Toxicol 25:5–32. https://doi.org/10.1007/s10565-008-9072-z

    Article  CAS  PubMed  Google Scholar 

  21. Downie BR, Sánchez A, Knötgen H, Contreras-Jurado C, Gymnopoulos M, Weber C, Stühmer W, Pardo LA (2008) Eag1 expression interferes with hypoxia homeostasis and induces angiogenesis in tumors. J Biol Chem 283:36234–36240. https://doi.org/10.1074/jbc.M801830200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516. https://doi.org/10.1080/01926230701320337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Espina M, Corte-Rodríguez M, Aguado L, Montes-Bayón M, Sierra MI, Martínez-Camblor P, Blanco-González E, Sierra LM (2017) Cisplatin resistance in cell models: evaluation of metallomic and biological predictive biomarkers to address early therapy failure. Metallomics 9:564–574. https://doi.org/10.1039/c7mt00014f

    Article  CAS  PubMed  Google Scholar 

  24. Florea A-M, Büsselberg D (2009) Anti-cancer drugs interfere with intracellular calcium signaling. Neuro Toxicology 30:803–810. https://doi.org/10.1016/j.neuro.2009.04.014

    Article  CAS  Google Scholar 

  25. Fraser SP, Pardo LA (2008) Colloquium on ion channels and cancer. EMBO Rep 9:512–515. https://doi.org/10.1038/embor.2008.75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gajski G, Zegurab B, Ladeira C, Novak M, Sramkova M, Pourrut B, Del Bo C, Milić M, Bjerve Gutzkow K, Costa S, Dusinska M, Brunborg G, Collins A (2019b) The comet assay in animal models: from bugs to whales – (Part 2 Vertebrates). Mutat Res 781:130–164. https://doi.org/10.1016/j.mrrev.2019.04.002

    Article  CAS  PubMed  Google Scholar 

  27. Gajski G, Zegurab B, Ladeira C, Pourrut B, Del Bo C, Novak M, Sramkova M, Milić M, Bjerve Gutzkow K, Costa S, Dusinska M, Brunborg G, Collins A (2019a) The comet assay in animal models: from bugs to whales - (Part 1 Invertebrates). Mutat Res 779:82–113. https://doi.org/10.1016/j.mrrev.2019.02.003

    Article  CAS  PubMed  Google Scholar 

  28. Gaivão I, Sierra LM (2014) Drosophila comet assay: insights, uses, and future perspectives. Front Genet 5:304. https://doi.org/10.3389/fgene.2014.00304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gao X, Zhang G, Shan S, Shang Y, Chi L, Li H, Cao Y, Zhu X, Zhang M, Yang J (2016) Depletion of paraspeckle protein 1 enhances methyl methanesulfonate-induced apoptosis through mitotic catastrophe. PlOS ONE 11:e0146952. https://doi.org/10.1371/journal.pone.0146952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Glassmeier G, Hempel K, Wulfsen I, Bauer CK, Schumacher U, Schwarz JR (2012) Inhibition of HERG1 K+ channel protein expression decreases cell proliferation of human small cell lung cancer cells. Pflugers Arch - Eur J Physiol 463:365–376. https://doi.org/10.1007/s00424-011-1045-z

    Article  CAS  Google Scholar 

  31. Graham FL, Smiley J, Russell WC, Nairn R (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen Virol 36:59–72. https://doi.org/10.1099/0022-1317-36-1-59

    Article  CAS  PubMed  Google Scholar 

  32. Guidarelli A, Cattebeni F, Cantoni O (1997) Alternative mechanisms for hydroperoxide-induced DNA single strand breakage. Free Rad Res 26:537–547. https://doi.org/10.3109/10715769709097825

    Article  CAS  Google Scholar 

  33. Gutman GA, Chandy KG, Grissmer S, Lazdunski M, McKinnon D, Pardo LA, Robertson GA, Rudy B, Sanguinetti MC, Stühmer W, Wang X (2005) International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potas- sium channels. Pharmacol Rev 57:473–508. https://doi.org/10.1124/pr.57.4.10

    Article  CAS  PubMed  Google Scholar 

  34. Habas K, Najafzadeh M, Baumgartner A, Brinkworth MH, Anderson D (2017) An evaluation of DNA damage in human lymphocytes and sperm exposed to methyl methanesulfonate involving the regulation pathways associated with apoptosis. Chemosphere 185:709e716–709e716. https://doi.org/10.1016/j.chemosphere.2017.06.014

    Article  CAS  Google Scholar 

  35. Hamid T, Malik MT, Kakar SS (2005) Ectopic expression of PTTG1/securin promotes tumorigenesis in human embryonic kidney cells. Mol Cancer 4:3. https://doi.org/10.1186/1476-4598-4-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hervé JC (2015) Membrane channels and transporters in cancers. Biochim Biophys Acta 1848:2473–2476. https://doi.org/10.1016/j.bbamem.2015.06.017

    Article  CAS  PubMed  Google Scholar 

  37. Hille B (2001) Ion channels of excitable membranes. Sinauer Associates, Sunderland, MA

    Google Scholar 

  38. Hombach-Klonisch S, Kalantari F, Medapati MR, Natarajan S, Krishnan SN, Kumar-Kanojia A, Thanasupawat T, Begum F, Xu FY, Hatch GM, Los M, Klonisch T (2019) HMGA2 as a functional antagonist of PARP1 inhibitors in tumor cells. Mol Oncol 13:153–170. https://doi.org/10.1002/1878-0261.12390

    Article  CAS  PubMed  Google Scholar 

  39. Iorio J, Lastraioli E, Tofani L, Petroni G, Antonuzzo L, Messerini L, Perrone G, Caputo D, Francesconi M, Amato MM, Cadei M, Arcangeli G, Villanacci V, Boni L, Coppola R, Di Costanzo F, Arcangeli A (2020) hERG1 and HIF-2α behave as biomarkers of positive response to bevacizumab in metastatic colorectal cancer patients. Transl Oncol 13:100740. https://doi.org/10.1016/j.tranon.2020.01.001

    Article  PubMed  PubMed Central  Google Scholar 

  40. Jehle J, Schweizer PA, Katus HA, Thomas D (2011) Novel roles for hERG K+ channels in cell proliferation and apoptosis. Cell Death Dis 2:e193. https://doi.org/10.1038/cddis.2011.77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jelezcova E, Trivedi RN, Wang XH, Tang JB, Brown AR, Goellner EM, Schamus S, Fornsaglio JL, Sobol RW (2010) Parp1 activation in mouse embryonic fibroblasts promotes Pol beta-dependent cellular hypersensitivity to alkylation damage. Mutat Res 686:57–67. https://doi.org/10.1016/j.mrfmmm.2010.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jespersen C, Soragni E, Chou JC, Arora PS, Dervan PB, Gottesfeld JM (2012) Chromatin structure determines accessibility of a hairpin polyamide–chlorambucil conjugate at histone H4 genes in pancreatic cancer cells. Bioorg Med Chem Lett 22:4068–4071. https://doi.org/10.1016/j.bmcl.2012.04.090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jiang Y, Zhang X-Y, Sune L, Zhang G-L, Duerksen-Hughesd P, Zhub X-Q, Yang J (2012) Methyl methanesulfonate induces apoptosis in p53-deficient H1299 and Hep3B cells through a caspase 2- and mitochondria-associated pathway. Environ Toxicology Pharmacol 34:694–704. https://doi.org/10.1016/j.etap.2012.09.019

    Article  CAS  Google Scholar 

  44. Jin S, Fan F, Fan W, Zhao H, Tong T, Blanck P, Alomo I, Rajasekaran B, Zhan Q (2001) Transcription factors Oct-1 and NF-YA regulate the p53-independent induction of the GADD45 following DNA damage. Oncogene 20:2683–2690. https://doi.org/10.1038/sj.onc.1204390

    Article  CAS  PubMed  Google Scholar 

  45. Johannessen TC, Prestegarden L, Grudic A, Hegi ME, Tysnes BB, Bjerkvig R (2013) The DNA repair protein ALKBH2 mediates temozolomide resistance in human glioblastoma cells. Neuro Oncol 15:269–278. https://doi.org/10.1093/neuonc/nos301

    Article  CAS  PubMed  Google Scholar 

  46. Kaczmarek LK (2006) Non-conducting functions of voltage-gated ion channels. Nat Rev Neurosci 7:761–771. https://doi.org/10.1038/nrn1988

    Article  CAS  PubMed  Google Scholar 

  47. Kassie F1, Parzefall W, Knasmüller S (2000) Single cell gel electrophoresis assay: a new technique for human biomonitoring studies. Mutat Res 463:13–31. https://doi.org/10.1016/s1383-5742(00)00041-7

    Article  CAS  PubMed  Google Scholar 

  48. Kavsan VM, Iershov AV, Balynska OV (2011) Immortalized cells and one oncogene in malignant transformation: old insights on new explanation. BMC Cell Biol 12:23. https://doi.org/10.1186/1471-2121-12-23

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kirsch GE, Trepakovaa ES, Brimecombea JC, Sidacha SS, Ericksona HD, Kochana MC, Shyjkaa LM, Lacerda AE, Brown AM (2004) Variability in the measurement of hERG potassium channel inhibition: effects of temperature and stimulus pattern. J Pharmacol Toxicol Meth 50:93–101. https://doi.org/10.1016/j.vascn.2004.06.003

    Article  CAS  Google Scholar 

  50. Klungland A, Laake K, Hoff E, Seeberg E (1995) Spectrum of mutations induced by methyl and ethyl methanesulfonate at the hprt locus of normal and tag expressing Chinese hamster fibroblasts. Carcinogenesis 16:1281–1285. https://doi.org/10.1093/carcin/16.6.1281

    Article  CAS  PubMed  Google Scholar 

  51. Köberle B, Röscheisen C, Helbig R, Speit G (1993) Molecular characterization of methyl methanesulphonate (MMS)-induced HPRT mutations in V79 cells. Mutat Res 301:65–71. https://doi.org/10.1016/0165-7992(93)90058-4

    Article  PubMed  Google Scholar 

  52. Kunzelmann K (2005) Ion channels and cancer. J Membr Biol 205:159–173. https://doi.org/10.1007/s00232-005-0781-4

    Article  CAS  PubMed  Google Scholar 

  53. Lastraioli E, Guasti L, Crociani O, Polvani S, Hofmann G, Witchel H, Bencini L, Calistri M, Messerini L, Scatizzi M, Moretti R, Wanke E, Olivotto M, Mugnai G, Arcangeli A (2004) herg1 gene and HERG1 protein are overexpressed in colorectal cancers and regulate cell invasion of tumor cells. Cancer Res 64:606–611. https://doi.org/10.1158/0008-5472.can-03-2360

    Article  CAS  PubMed  Google Scholar 

  54. Lastraioli E, Lottini T, Bencini L, Bernini M, Arcangeli A (2015) hERG1 potassium channels: novel biomarkers in human solid cancers. BioMed Res Int 2015:896432–896439. https://doi.org/10.1155/2015/896432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Litan A, Langhans SA (2015) Cancer as a channelopathy: ion channels and pumps in tumor development and progression. Front Cell Neurosci 9:86. https://doi.org/10.3389/fncel.2015.00086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Manoli S, Coppola S, Duranti C, Lulli M, Magni L, Kuppalu N, Nielsen N, Schmidt T, Schwab A, Becchetti A, Arcangeli A (2019) The activity of Kv11.1 potassium channel modulates F-Actin organization during cell migration of pancreatic ductal adenocarcinoma cells. Cancers 11:135. https://doi.org/10.3390/cancers11020135

    Article  CAS  PubMed Central  Google Scholar 

  57. Menéndez ST, Rodrigo JP, Alvarez-Teijeiro S, Villaronga MA, Allonca E, Vallina A, Astudillo A, Barros F, Suárez C, García-Pedrero JM (2012) Role of HERG1 potassium channel in both malignant transformation and disease progression in head and neck carcinomas. Mod Pathol 25:1069–1078. https://doi.org/10.1038/modpathol.2012.63

    Article  CAS  PubMed  Google Scholar 

  58. Metral E, Bechetoille N, Demarne F, Damour O, Rachidi W (2018) Keratinocyte stem cells are more resistant to UVA radiation than their direct progeny. PLoS One 13:e0203863. https://doi.org/10.1371/journal.pone.0203863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Miranda P, Giráldez T, de la Peña P, Manso DG, Alonso-Ron C, Gómez-Varela D, Domínguez P, Barros F (2005) Specificity of TRH receptor coupling to G-proteins for regulation of ERG K+ channels in GH3 rat anterior pituitary cells. J Physiol 566:717–731. https://doi.org/10.1113/jphysiol.2005.085803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Miranda P, Manso DG, Barros F, Carretero L, Hughes TE, Alonso-Ron C, Domínguez P, de la Peña P (2008) FRET with multiply labeled HERG K+ channels as a reporter of the in vivo coarse architecture of the cytoplasmic domains. Biochim Biophys Acta 1783:1681–1699. https://doi.org/10.1016/j.bbamcr.2008.06.009

    Article  CAS  PubMed  Google Scholar 

  61. Møller P (2018) The comet assay: ready for 30 more years. Mutagenesis 33:1–7. https://doi.org/10.1093/mutage/gex046

    Article  CAS  PubMed  Google Scholar 

  62. Monteith GR, Prevarskaya N, Roberts-Thomson SJ (2017) The calcium-cancer signalling nexus. Nat Rev Cancer 17:367–380. https://doi.org/10.1038/nrc.2017.18

    Article  CAS  PubMed  Google Scholar 

  63. Nivard MJM, Pastink A, Vogel EW (1992) Molecular analysis of mutations induced in the vermilion gene of Drosophila melanogaster by methyl methanesulfonate. Genetics 131:673–682

    Article  CAS  Google Scholar 

  64. Ouadid-Ahidouch H, Ahidouch A (2013) K+ channels and cell cycle progression in tumor cells. Front Physiol 4:220. https://doi.org/10.3389/fphys.2013.00220

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ouadid-Ahidouch H, Ahidouch A, Pardo LA (2016) Kv10.1 K+ channel: from physiology to cancer. Pflugers Arch - Eur J Physiol 468:751–762. https://doi.org/10.1007/s00424-015-1784-3

    Article  CAS  Google Scholar 

  66. Palazzo RP, Jardim LB, Bacellar A, de Oliveira FR, Maraslis FT, Pereira CHJ, da Silva J, Maluf SW (2018) DNA damage and repair in individuals with ataxia-telangiectasia and their parents. Mutat Res 836:122–126. https://doi.org/10.1016/j.mrgentox.2018.06.007

    Article  CAS  Google Scholar 

  67. Palme D, Misovic M, Ganser K, Klumpp L, Salih HR, Zips D, Huber SM (2020) hERG K+ channels promote survival of irradiated leukemia cells. Front Pharmacol 11:489. https://doi.org/10.3389/fphar.2020.00489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Panina Y, Germond A, Masui S, Watanabe TM (2018) Validation of common housekeeping genes as reference for qPCR gene expression analysis during iPS reprogramming process. Sci Rep 8:8716. https://doi.org/10.1038/s41598-018-26707-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pardo LA, Stühmer W (2014) The roles of K+ channels in cancer. Nat Rev Cancer 14:39–48. https://doi.org/10.1038/nrc3635

    Article  CAS  PubMed  Google Scholar 

  70. Paulovich AG, Hartwell LH (1995) A checkpoint regulates the rate of progression through S phase in S. cerevisiae in response to DNA damage. Cell 82:841–847. https://doi.org/10.1016/0092-8674(95)90481-6

    Article  CAS  PubMed  Google Scholar 

  71. Pillozzi S, Brizzi MF, Balzi M, Crociani O, Cherubini A, Guasti L, Bartolozzi B, Becchetti A, Wanke E, Bernabei PA, Olivotto M, Pegoraro L, Arcangeli A (2002) HERG potassium channels are constitutively expressed in primary human acute myeloid leukemias and regulate cell proliferation of normal and leukemic hemopoietic progenitors. Leukemia 16:1791–1798. https://doi.org/10.1038/sj.leu.2402572

    Article  CAS  PubMed  Google Scholar 

  72. Pillozzi S, D’Amico M, Bartoli G, Gasparoli L, Petroni G, Crociani O, Marzo M, Guerriero A, Messori L, Severi M, Udisti R, Wulff H, Chandy KG, Becchetti A, Arcangeli A (2018) The combined activation of KCa3.1 and inhibition of Kv11.1/hERG1 currents contribute to overcome Cisplatin resistance in colorectal cancer cells. Br J Cancer 118:200–212. https://doi.org/10.1038/bjc.2017.392

    Article  CAS  PubMed  Google Scholar 

  73. Prevarskaya N, Skryma R, Yaroslav Shuba Y (2018) ion channels in cancer: are cancer hallmarks oncochannelopathies? Physiol Rev 98:559–621. https://doi.org/10.1152/physrev.00044.2016

    Article  CAS  PubMed  Google Scholar 

  74. Ray Chaudhuri A, Nussenzweig A (2017) The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol 18:610–621. https://doi.org/10.1038/nrm.2017.53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rieger AM, Nelson KL, Konowalchuk JD, Barreda DR (2011) Modified annexin V/propidium iodide apoptosis assay for accurate assessment of cell death. J Vis Exp 24:2597. https://doi.org/10.3791/2597

    Article  CAS  Google Scholar 

  76. Sgagias MK, Wagner KU, Hamik B, Stoeger S, Spieker R, Huber LJ, Chodosh LA, Cowan KH (2004) Brca1-deficient murine mammary epithelial cells have increased sensitivity to CDDP and MMS. Cell Cycle 3:1451–1456. https://doi.org/10.4161/cc.3.11.1211

    Article  CAS  PubMed  Google Scholar 

  77. Shieh C-C, Coghlan M, Sullivan JP, Gopalakrishnan M (2000) Potassium channels: Molecular defects, diseases, and therapeutic opportunities. Pharmacol Rev 52:557–593

    CAS  PubMed  Google Scholar 

  78. Siler J, Xia B, Wong C, Kath M, Bi X (2017) Cell cycle-dependent positive and negative functions of Fun30 chromatin remodeler in DNA damage response. DNA Repair 50:61–70. https://doi.org/10.1016/j.dnarep.2016.12.009

    Article  CAS  PubMed  Google Scholar 

  79. Singh NP (2016) The comet assay: Reflections on its development, evolution and applications. Mutat Res 767:23–30. https://doi.org/10.1016/j.mrrev.2015.05.004

    Article  CAS  Google Scholar 

  80. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191. https://doi.org/10.1016/0014-4827(88)90265-0

    Article  CAS  PubMed  Google Scholar 

  81. Spector PS, Curran ME, Keating MT, Sanguinetti MC (1996a) Class III antiarrhythmic drugs block HERG, a human cardiac delayed rectifier K+ channel. Circ Res 78:499–503. https://doi.org/10.1161/01.RES.78.3.499

    Article  CAS  PubMed  Google Scholar 

  82. Spector PS, Curran ME, Zou A, Keating MT, Sanguinetti MC (1996b) Fast inactivation causes rectification of the IKr channel. J Gen Physiol 107:611–619. https://doi.org/10.1085/jgp.107.5.611

    Article  CAS  PubMed  Google Scholar 

  83. Stork D, Timin EN, Berjukow S, Huber C, Hohaus A, Auer M, Hering S (2007) State dependent dissociation of HERG channel inhibitors. Br J Pharmacol 151:1368–1376. https://doi.org/10.1038/sj.bjp.0707356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sun B, Ross SM, Rowley S, Adeleye Y, Clewell RA (2017) Contribution of ATM and ATR kinase pathways to p53-mediated response in etoposide and methyl methanesulfonate induced DNA damage. Environ Mol Mutagen 58:72–83. https://doi.org/10.1002/em.22070

    Article  CAS  PubMed  Google Scholar 

  85. Tsuda M, Cho K, Ooka M, Shimizu N, Watanabe R, Yasui A, Nakazawa Y, Ogi T, Harada H, Agama K, Nakamura J, Asada R, Fujiike H, Sakuma T, Yamamoto T, Murai J, Hiraoka M, Koike K, Pommier Y, Takeda S, Hirota K (2017) ALC1/CHD1L, a chromatin-remodeling enzyme, is required for efficient base excision repair. PLoS One 12:e0188320. https://doi.org/10.1371/journal.pone.0188320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Vandenberg JI, Perry MD, Perrin MJ, Mann SA, Ke Y, Hill AP (2012) hERG K+ channels: structure, function, and clinical significance. Physiol Rev 92:1393–1478. https://doi.org/10.1152/physrev.00036.2011

    Article  CAS  PubMed  Google Scholar 

  87. Vivaudou M (2019) eeFit: a Microsoft Excel-embedded program for interactive analysis and fitting of experimental dose-response data. BioTechniques 66:186–193. https://doi.org/10.2144/btn-2018-0136

    Article  CAS  PubMed  Google Scholar 

  88. Wang H, Zhang Y, Cao L, Han H, Wang J, Yang B, Nattel S, Wang Z (2002) HERG K+ channel, a regulator of tumor cell apoptosis and proliferation. Cancer Res 62:4843–4848

    CAS  PubMed  Google Scholar 

  89. Wang Z (2004) Roles of K+ channels in regulating tumour cell proliferation and apoptosis. Pflugers Arch - Eur J Physiol 448:274–286. https://doi.org/10.1007/s00424-004-1258-5

    Article  CAS  Google Scholar 

  90. Wulff H, Neil A, Castle NA, Pardo LA (2009) Voltage-gated potassium channels as therapeutic targets. Nat Rev Drug Discov 8:982–1001. https://doi.org/10.1038/nrd2983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yang M, Brackenbury WJ (2013) Membrane potential and cancer progression. Front Physiol 4:185. https://doi.org/10.3389/fphys.2013.00185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yao J-A, Du X, Lu D, Baker RL, Daharsh E, Atterson P (2005) Estimation of potency of HERG channel blockers: impact of voltage protocol and temperature. J Pharmacol Toxicol Meth 52:146–153. https://doi.org/10.1016/j.vascn.2005.04.008

    Article  CAS  Google Scholar 

  93. Zhang R, Tian P, Chi WJ, Wang Y, Sun L, Liu Y, Tian S, Zhang Q (2012) Human ether-à-go-go-related gene expression is essential for cisplatin to induce apoptosis in human gastric cancer. Oncol Rep 27:433–440. https://doi.org/10.3892/or.2011.1515

    Article  CAS  PubMed  Google Scholar 

  94. Zhou Z, Gong Q, Ye B, Fan Z, Makielski JC, Robertson GA, January CT (1998) Properties of HERG channels stably expressed in HEK 293 cells studied at physiological temperature. Biophys J 74:230–241. https://doi.org/10.1016/S0006-3495(98)77782-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the expert technical contribution of Teresa González. EAG held a Ph.D. Bridge B fellowship from the University of Oviedo. The authors would like to acknowledge the technical support provided by the Scientific-Technical Services (SCTs) of the University of Oviedo.

Funding

LMS pertains to the Mass Spectrometry & Biomedical Analysis group of the University of Oviedo and was supported by Grant MINECO CTQ2016-80069-C2-1-R from the Ministerio de Economía y Competitividad of Spain. FB and PdlP work at the Hormone Receptors and Ion Channels group of the University of Oviedo and were supported in part by Grant BFU2015-66429-P (MINECO/FEDER UE) from the Spanish Ministerio de Economía y Competitividad, co-financed with European Fund for Economic and Regional Development (FEDER) funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisa María Sierra.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández-Villabrille, S., Álvarez-González, E., Barros, F. et al. Influence of Kv11.1 (hERG1) K+ channel expression on DNA damage induced by the genotoxic agent methyl methanesulfonate. Pflugers Arch - Eur J Physiol 473, 197–217 (2021). https://doi.org/10.1007/s00424-021-02517-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-021-02517-2

Keywords

Navigation