Skip to main content

Advertisement

Log in

Environmental and biological controls on monthly and annual evapotranspiration in China’s Loess Plateau

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Information about evapotranspiration (ET) is essential for managing water resources, especially in areas with limited water and no irrigation facilities. In this study, based on ET observations made using an eddy covariance system, the variation of ET and its control factors are investigated on monthly and annual scales in the context of China’s Loess Plateau. Monthly ET is determined by the reference ET (ET0) and surface conductance (gs), where ET0 is an indicator of both the energy available for ET and the atmospheric demand for evaporation and gs represents the environmental stress that limits ET. The correlations among volumetric soil water content (SWC), leaf area index (LAI), and monthly ET are weak across all the studied ecosystems. ET shows large inter-annual variability in the Loess Plateau, with a coefficient of inter-annual variation of 19.5%. The environmental variables of ET0, precipitation (P), SWC, LAI, and gs also show notable inter-annual variability. P is the original factor forcing the inter-annual variability of ET. LAI and gs are important for regulating ET and reduce the correlation between ET and SWC. Different ecosystems use different biological processes to regulate ET under conditions of water stress: for natural vegetation, gs responds directly to SWC and surface air vapor pressure (e) and controls ET by regulating transpiration; for cropland, LAI responds directly to SWC and e and determines gs, thereby regulating ET. The present results suggest that LAI is useful for characterizing the physiological constraints on cropland ET but is not suitable for estimating the ET of semi-arid natural vegetation. Parameterizing gs with e could give better estimates of ET for natural vegetation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Baldocchi DD, Xu L, Kiang N (2004) How plant functional-type, weather, seasonal drought, and soil physical properties alter water and energy fluxes of an oak-grass savanna and an annual grassland. Agric For Meteorol 123:13–39

    Article  Google Scholar 

  • Baudena M, Hardenberg JV, Provenzale A (2013) Vegetation patterns and soil-atmosphere water fluxes in drylands. Adv Water Resour 53:131–138

    Article  Google Scholar 

  • Brummer C, Black TA, Jassal RS, Grant NJ, Spittlehouse DL, Chen B, Nesic Z, Amiro BD, Arain MA, Barr AG, Bourque CPA, Coursolle C, Dunn AL, Flanagan LB, Humphreys ER, Lafleur PM, Margolis HA, McCaughey JH, Wofsy SC (2012) How climate and vegetation type influence evapotranspiration and water use efficiency in Canadian forest, peatland and grassland ecosystems. Agric For Meteorol 153:14–30

    Article  Google Scholar 

  • Chatterjee S, Price B (1977) Regression analysis by example. John Wiley and Sons, 228 pp

  • Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grünwald T, Hollinger D, Jensen NO, Katul G, Keronen P, Kowalski A, Ta Lai C, Law BE, Meyers T, Moncrieff J, Moors E, William Munger J, Pilegaard K, Rannik Ü, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, Wofsy S (2001) Gap filling strategies for long term energy flux data sets. Agric For Meteorol 107:71–77

    Article  Google Scholar 

  • Fisher JB, Tu KP, Baldocchi DD (2008) Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens Environ 112:901–919. https://doi.org/10.1016/jrse200706025

    Article  Google Scholar 

  • Foken T (2008) The energy balance closure problem: an overview. Ecol Appl 18:1351–1367

    Article  Google Scholar 

  • Foken T, Leuning R, Oncley SR, Mauder M, Aubinet M (2012) Corrections and data quality control In: Aubinet M, Vesala T, Papale D (Eds). Eddy Covariance Springer, pp 85–131

  • Fu W, Huang M, Gallichand J, Shao M (2012) Optimization of plant coverage in relation to water balance in the loess plateau of China. Geoderma 173–174:134–144

    Article  Google Scholar 

  • Gao G, Chen D, Xu C, Simelton E (2007) Trend of estimated actual evapotranspiration over China during 1960-2002. J Geophys Res112: D11102

  • Garcia M, Sandholt I, Ceccato P, Ridler M, Mougin E, Kergoat L, Morillas L, Timouk F, Fensholt R, Domingo F (2013) Actual evapotranspiration in drylands derived from in-situ and satellite data: assessing biophysical constraints. Remote Sens Environ 131:103–118. https://doi.org/10.1016/jrse201212016

    Article  Google Scholar 

  • Garratt JR, Hicks BB (1973) Momentum, heat and water-vapor transfer to and from natural and artificial surfaces. Q J R Meteorol Soc 99(422):680–687

    Article  Google Scholar 

  • Glenn EP, Huete AR, Nagler PL, Hirschboeck KK, Brown P (2007) Integrating remote sensing and ground methods to estimate evapotranspiration. Crit Rev Plant Sci 26:139–168

    Article  Google Scholar 

  • Glenn E, Nagler P, Huete A (2010) Vegetation index methods for estimating evapotranspiration by remote sensing. Surv Geophys 31(6):531–555

    Article  Google Scholar 

  • Gong TT, Lei HM, Yang DW, Jiao Y, Yang HB (2014) Effects of vegetation change on evapotranspiration in a semiarid shrubland of the loess plateau. Hydrol Earth Syst Sci 11:13571–13605

    Article  Google Scholar 

  • Huntington TG (2006) Evidence for intensification of the global water cycle: review and synthesis. J Hydrol 319:83–95

    Article  Google Scholar 

  • Iglesias A, Garrote L (2015) Adaptation strategies for agricultural water management under climate change in Europe. Agric Water Manag 155:113–124

    Article  Google Scholar 

  • IPCC (2013) Climate Change 2013: Fifth Assessment Report of the Intergovern-mental Panel on Climate Change IPCC Cambridge, United Kingdom/New York,NY, USA

  • Jiang B, Liang S, Yuan W (2014) Observational evidence for impacts of vegetation change on local surface climate over northern China using the granger causality test. J Geophys Res 120: 10.1002/jgrgv1201, 1–12

  • Jung M, Reichstein M, Ciais P, Seneviratne SI, Sheffield J, Goulden ML, Bonan G, Cescatti A, Chen J, de Jeu R, Dolman AJ, Eugster W, Gerten D, Gianelle D, Gobron N, Heinke J, Kimball J, Law BE, Montagnani L, Mu Q, Mueller B, Oleson K, Papale D, Richardson AD, Roupsard O, Running S, Tomelleri E, Viovy N, Weber U, Williams C, Wood E, Zaehle S, Zhang K, (2010) Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467 (7318):951-954

  • Li D, Cong Z, Pan M, Zhang L (2013) Vegetation control on water and energy balance within the Budyko framework. Water Resour Res 49:1–8

    Article  Google Scholar 

  • Li MS, Babel W, Chen X, Zhang L, Sun F, Wang B, Ma Y, Hu Z, Foken T (2015) A 3-year dataset of sensible and latent heat fluxes from the Tibetan plateau derived using eddy co variance measurements. Theor Appl Climatol 122:457–469

    Article  Google Scholar 

  • Lin S, Wang YR (2007) Spatial-temporal evolution of precipitation in China loess plateau. J Desert Res 27:502–508

    Google Scholar 

  • Lin YS, Medlyn B, Duursma R et al (2015) Optimal stomatal behaviour around the world. Nat Clim Chang 5:459–464. https://doi.org/10.1038/NCLIMATE2550

    Article  Google Scholar 

  • Liu SM, Xu ZW, Wang WZ, Jia ZZ, Zhu MJ, Wang JM (2011) A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem. Hydrol Earth Syst Sci 15:1291–1306

    Article  Google Scholar 

  • Liu F, Shen SH, Yang BY, Tao SL (2013a) Spectral monitoring model of leaf/canopy stomatal conductance in maize under different soil moisture treatments. Chin J Agrometeorol 34(6):727–732

  • Liu SM, Xu ZW, Zhu ZL, Jia ZZ, Zhu MJ (2013b) Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River basin, China. J Hydrol 487:24–38

    Article  Google Scholar 

  • Mo XG, Liu SX, Lin ZH, Chen D, Zhao WP (2004) Simulating the water balance of the wuding river basin in the Loess Plateau with a distributed eco-hydrological model. Acta Geograph Sin 59:341–347

    Google Scholar 

  • Pereira L, Allen RG, Smith M, Raes D (2015) Crop evapotranspiration estimation with FAO56: past and future. Agric Water Manage 147:4–20

    Article  Google Scholar 

  • Shen Y, Kondoh A, Tang C, Zhang Y, Chen J, Li W, Sakura Y, Liu C, Tanaka J, Shimada J (2002) Measurement and analysis of evapotranspiration and surface conductance of wheat canopy. Hydrol Process 16:2173–2187

    Article  Google Scholar 

  • Song Y, Ryu Y, Jeon S (2014) Interannual variability of regional evapotranspiration under precipitation extremes: a case study of the Youngsan River basin in Korea. J Hydrol 519:3531–3540

    Article  Google Scholar 

  • Sun JY, Cao HX, Huang Y (2009) Correlation between canopy spectral vegetation index and leaf stomatal conductance in rapeseed (Brassica napus L). Acta Agron Sin 35(6):1131–1138

    Article  Google Scholar 

  • Suzuki R, Masuda K, Dye DG (2007) Interannual covariability between actual evapotranspiration and PAL and GIMMS NDVIs of northern Asia. Remote Sens Environ 106(3):387–398. https://doi.org/10.1016/jrse200610016

    Article  Google Scholar 

  • Tian YC, Zhu Y, Yao X, Zhou CJ, Cao WX (2006) Quantitative relationships between canopy spectral reflectance and leaf stomatal conductance in rice. J Plant Ecol 30(2):261–267

    Article  Google Scholar 

  • Todorovic M, Lamaddalena N, Jovanovic N, Jovanovic N, Pereira LS (2015) Agricultural water management: priorities and challenges. Agric Water Manag 147:1–3

    Article  Google Scholar 

  • Verma SB, Kim J, Clement RJ (1989) Carbon-dioxide, water vapor and sensible heat fluxes over a tallgrass prairie. Bound-Layer Meteorol 46(1–2):53–67

    Article  Google Scholar 

  • Wang KC, Dickinson ER (2012) A review of global terrestrial evapotranspiration: observation, modeling, climatology, and climatic variability. Rev Geophys 50:RG2005. https://doi.org/10.1029/2011RG000373

    Article  Google Scholar 

  • Wang KC, Li ZQ, Cribb M (2006a) Estimation of evaporative fraction from a combination of day and night land surface temperatures and NDVI: a new method to determine the Priestley-Taylor parameter. Remote Sens Environ 102:293–305

    Article  Google Scholar 

  • Wang Y, Jiang T, Xu C, Shi Y (2006b) Trend of evapotranspiration over the Yangtze River basin in 1961-2000. Adv Clim Chang Res 2(suppl 1):35–40

  • Wang KC, Wang PC, Li ZQ, Cribb M, Sprrow M (2007) A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index, and temperature. J Geophys Res 112:D15107. https://doi.org/10.1029/2006JD008351

    Article  Google Scholar 

  • Wang WY, Zhang Q, Yang FL (2013) Study of the minimum available precipitation and the precipitation conversion rate in the semi-arid Yuzhong region. Acta Meteorol Sin 71(5):952–961

    Google Scholar 

  • Williams CA, Reichstein M, Buchmann N, Baldocchi D, Beer C, Schwalm C, Wohlfahrt G, Hasler N, Bernhofer C, Foken T, Papale D, Schymanski S, Schaefer K (2012) Climate and vegetation controls on the surface water balance: synthesis of evapotranspiration measured across a global network of flux towers. Water Resour Res 48:W06523

    Article  Google Scholar 

  • Wilson KB, Baldocchi D (2000) Seasonal and interannual variability of energy fluxes over a broadleaved temperate deciduous forest in North America. Agric For Meteorol 100:1–18

    Article  Google Scholar 

  • Yang QL, Zhang FC, Liu XG, Wang X, Zhang L, Ge ZY (2011) Research progress on regulation mechanism for the process of water transporting in plants. Acta Ecol Sin 31:4427–4436

    Google Scholar 

  • Yang F, Zhang Q, Wang RY, Wang S, Yue P, Wang HL, Zhao H (2013) Characteristics of evapotranspiration and crop coefficient of agroecosystems in semi-arid areas of loess plateau, Northwest China. Chin J Appl Ecol 24:1209–1214

    Google Scholar 

  • Yang L, Wei W, Chen L, Chen WL, Wang JL (2014) Response of temporal variation of soil moisture to vegetation restoration in semi-arid Loess Plateau, China. Catena 115:123–133

    Article  Google Scholar 

  • Yao YJ, Liang SL, Cheng J, Liu SM, Fisher JB, Zhang XD, Jia K, Zhao X, Qin QM, Zhao B, Han SJ, Zhou GS, Zhou GY, Li YL, Zhao SH (2013) MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley–Taylor algorithm. Agric For Meteorol 172:187–202. https://doi.org/10.1016/jagrformet201211016

    Article  Google Scholar 

  • Yuan W, Liu S, Yu G, Bonnefond JM, Chen J, Davis K, Desai RA, Goldstein HA, Gianelle D, Rossi F, Suyker EA, Verma BS (2010) Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data. Remote Sens Environ 114:1416–1431

    Article  Google Scholar 

  • Yue P, Zhang Q, Yang JH, Li HY, Sun XY, Yang QG, Zhang JZ (2011) Surface heat flux and energy budget for semi-arid grassland on the loess plateau. Acta Ecol Sin 31:6866–6876

    Google Scholar 

  • Yue P, Zhang Q, Zhao W, Wang JS, Yao YB, Wang S, Hao XC, Yang FL, Wang RA (2013) Effects of clouds and precipitation disturbance on the surface radiation budget and energy balance over loess plateau semi-arid grassland in China. Acta Phys Sin 62:209201

    Google Scholar 

  • Zha T, Barr AG, Kamp G, Black TA, McCaughey JH, Flanagan LB (2010) Interannual variation of evapotranspiration from forest and grassland ecosystems in western Canada in relation to drought. Agric For Meteorol 150:1476–1484

    Article  Google Scholar 

  • Zhang L, Dawes WR, Walker GR (2001) Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour Res 37:701–708

    Article  Google Scholar 

  • Zhang Q, Deng ZY, Zhao YD, Qiao J (2008) The impacts of global change on the agriculture in Northwest China. Acta Ecol Sin 28:1210–1218

    Google Scholar 

  • Zhang Q, Huang J, Zhang L, Zhang LY (2013) Warming and drying climate over Loess plateau area in China and its effect on land surface energy exchange. Acta Phys Sin 62:019202

  • Zhang TF, Zhang B, Zhang M, Liu XL, Sun LW, An ML (2012) Spatiotemporal pattern of drought in Loess Plateau of Gansu Province, Northwest China in 1961-2010. Chin J ecol 31: 2066-2074

Download references

Acknowledgements

Remote sensing data (LAI) were provided by NASA EOS. We thank the College of Atmospheric Sciences, Lanzhou University, for providing observation data from the Semi-Arid Climate and Environment Observatory of Lanzhou University (Yuzhong site). We are grateful to all the investigators that participated in the field experiment at the Dingxi, Pingliang, and Qingyang sites. This work was jointly supported by the Major Program of the National Nature Science Foundation of China (41630426, 91637106, 41705075) and the Research Foundation for Talented Scholars of Chengdu University of Information Technology (KYTZ201734).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zesu Yang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Zhang, Q. & Hao, X. Environmental and biological controls on monthly and annual evapotranspiration in China’s Loess Plateau. Theor Appl Climatol 137, 1675–1692 (2019). https://doi.org/10.1007/s00704-018-2701-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-018-2701-4

Navigation