Skip to main content
Log in

Mitochondrial iron supply is required for the developmental pulse of ecdysone biosynthesis that initiates metamorphosis in Drosophila melanogaster

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Synthesis of ecdysone, the key hormone that signals the termination of larval growth and the initiation of metamorphosis in insects, is carried out in the prothoracic gland by an array of iron-containing cytochrome P450s, encoded by the halloween genes. Interference, either with iron-sulfur cluster biogenesis in the prothoracic gland or with the ferredoxins that supply electrons for steroidogenesis, causes a block in ecdysone synthesis and developmental arrest in the third instar larval stage. Here we show that mutants in Drosophila mitoferrin (dmfrn), the gene encoding a mitochondrial carrier protein implicated in mitochondrial iron import, fail to grow and initiate metamorphosis under dietary iron depletion or when ferritin function is partially compromised. In mutant dmfrn larvae reared under iron replete conditions, the expression of halloween genes is increased and 20-hydroxyecdysone (20E), the active form of ecdysone, is synthesized. In contrast, addition of an iron chelator to the diet of mutant dmfrn larvae disrupts 20E synthesis. Dietary addition of 20E has little effect on the growth defects, but enables approximately one-third of the iron-deprived dmfrn larvae to successfully turn into pupae and, in a smaller percentage, into adults. This partial rescue is not observed with dietary supply of ecdysone’s precursor 7-dehydrocholesterol, a precursor in the ecdysone biosynthetic pathway. The findings reported here support the notion that a physiological supply of mitochondrial iron for the synthesis of iron-sulfur clusters and heme is required in the prothoracic glands of insect larvae for steroidogenesis. Furthermore, mitochondrial iron is also essential for normal larval growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

7DHC:

7-dehydrocholesterol

20E:

20-hydroxyecdysone

BPS:

Bathophenanthroline disulfonate

dfh :

Drosophila frataxin

dib :

disembodied

dmfrn :

Drosophila mitoferrin

E74A :

Ecdysone-induced protein 74EF

FAC:

Ferric ammonium citrate

Fer1HCH :

Ferritin 1 heavy chain homolog

GFP:

Green fluorescent protein

Gp93 :

Glycoprotein 93

Hsc20 :

Heat shock protein cognate 2

MRS3/4:

Yeast mitoferrins

RNAi:

RNA interference

Rp49 :

Ribosomal protein L32

sad :

shadow

Tb :

Tubby

References

  1. Sheftel AD, Mason AB, Ponka P (2012) Biochim Biophys Acta 1820:161–187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Crichton RR (2001) Inorganic biochemistry of iron metabolism: from molecular mechanisms to clinical consequences, 2nd edn. Wiley, Chichester

    Book  Google Scholar 

  3. Lane DJ, Merlot AM, Huang ML, Bae DH, Jansson PJ, Sahni S, Kalinowski DS, Richardson DR (2015) Biochim Biophys Acta 1853:1130–1144

    Article  CAS  PubMed  Google Scholar 

  4. Lill R, Dutkiewicz R, Freibert SA, Heidenreich T, Mascarenhas J, Netz DJ, Paul VD, Pierik AJ, Richter N, Stümpfig M, Srinivasan V, Stehling O, Mühlenhoff U (2015) Eur J Cell Biol 94:280–291

    Article  CAS  PubMed  Google Scholar 

  5. Brazzolotto X, Pierrel F, Pelosi L (2014) Biochem J 460:79–89

    Article  CAS  PubMed  Google Scholar 

  6. Foury F, Roganti T (2002) J Biol Chem 277:24475–24483

    Article  CAS  PubMed  Google Scholar 

  7. Li L, Kaplan J (2004) J Biol Chem 279:33653–33661

    Article  CAS  PubMed  Google Scholar 

  8. Muhlenhoff U, Stadler JA, Richhardt N, Seubert A, Eickhorst T, Schweyen RJ, Lill R, Wiesenberger G (2003) J Biol Chem 278:40612–40620

    Article  PubMed  Google Scholar 

  9. Zhang Y, Lyver ER, Knight SA, Lesuisse E, Dancis A (2005) J Biol Chem 280:19794–19807

    Article  CAS  PubMed  Google Scholar 

  10. Shaw GC, Cope JJ, Li L, Corson K, Hersey C, Ackermann GE, Gwynn B, Lambert AJ, Wingert RA, Traver D, Trede NS, Barut BA, Zhou Y, Minet E, Donovan A, Brownlie A, Balzan R, Weiss MJ, Peters LL, Kaplan J, Zon LI, Paw BH (2006) Nature 440:96–100

    Article  CAS  PubMed  Google Scholar 

  11. Troadec MB, Warner D, Wallace J, Thomas K, Spangrude GJ, Phillips J, Khalimonchuk O, Paw BH, Ward DM, Kaplan J (2011) Blood 117:5494–5502

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Ren Y, Yang S, Tan G, Ye W, Liu D, Qian X, Ding Z, Zhong Y, Zhang J, Jiang D, Zhao Y, Lu J (2012) PLoS ONE 7:e29666

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Paradkar PN, Zumbrennen KB, Paw BH, Ward DM, Kaplan J (2009) Mol Cell Biol 29:1007–1016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Kunji ER (2004) FEBS Lett 564:239–244

    Article  CAS  PubMed  Google Scholar 

  15. Froschauer EM, Schweyen RJ, Wiesenberger G (2009) Biochim Biophys Acta 1788:1044–1050

    Article  CAS  PubMed  Google Scholar 

  16. Metzendorf C, Wu W, Lind MI (2009) Biochem J 421:463–471

    Article  CAS  PubMed  Google Scholar 

  17. Metzendorf C, Lind MI (2010) BMC Dev Biol 10:68

    Article  PubMed Central  PubMed  Google Scholar 

  18. Navarro JA, Botella JA, Metzendorf C, Lind MI, Schneuwly S (2015) Free Radic Biol Med 85:71–82

    Article  CAS  PubMed  Google Scholar 

  19. Massie HR, Aiello VR, Williams TR (1985) Mech Ageing Dev 29:215–220

    Article  CAS  PubMed  Google Scholar 

  20. Palandri A, L’Hote D, Cohen-Tannoudji J, Tricoire H, Monnier V (2015) Hum Mol Genet 24:2615–2626

    Article  CAS  PubMed  Google Scholar 

  21. Anderson PR, Kirby K, Hilliker AJ, Phillips JP (2005) Hum Mol Genet 14:3397–3405

    Article  CAS  PubMed  Google Scholar 

  22. Llorens JV, Navarro JA, Martínez-Sebastián MJ, Baylies MK, Schneuwly S, Botella JA, Moltó MD (2007) FASEB J 21:333–344

    Article  CAS  PubMed  Google Scholar 

  23. Uhrigshardt H, Rouault TA, Missirlis F (2013) J Biol Inorg Chem 18:441–449

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Sekeris CE, Karlson P (1964) Arch Biochem Biophys 105:483–487

    Article  CAS  PubMed  Google Scholar 

  25. Ashburner M (1975) Sov J Dev Biol 5:97–107

    CAS  PubMed  Google Scholar 

  26. Thummel CS (1995) Cell 83:871–877

    Article  CAS  PubMed  Google Scholar 

  27. Ono H (2014) Dev Biol 391:32–42

    Article  CAS  PubMed  Google Scholar 

  28. Mirth CK, Tang HY, Makohon-Moore SC, Salhadar S, Gokhale RH, Warner RD, Koyama T, Riddiford LM, Shingleton AW (2014) Proc Natl Acad Sci USA 111:7018–7023

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Sarraf-Zadeh L, Christen S, Sauer U, Cognigni P, Miguel-Aliaga I, Stocker H, Kohler K, Hafen E (2013) Dev Biol 381:97–106

    Article  CAS  PubMed  Google Scholar 

  30. Gundner AL, Hahn I, Sendscheid O, Aberle H, Hoch M (2014) PLoS ONE 9:e97332

    Article  PubMed Central  PubMed  Google Scholar 

  31. Koyama T, Rodrigues MA, Athanasiadis A, Shingleton AW, Mirth CK (2014) Elife 3:e03091

    Article  PubMed Central  Google Scholar 

  32. Jaszczak JS, Wolpe JB, Dao AQ, Halme A (2015) Genetics 200:1219–1228

    Article  PubMed  Google Scholar 

  33. Ohhara Y, Shimada-Niwa Y, Niwa R, Kayashima Y, Hayashi Y, Akagi K, Ueda H, Yamakawa-Kobayashi K, Kobayashi S (2015) Proc Natl Acad Sci USA 112:1452–1457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Moeller ME, Danielsen ET, Herder R, O’Connor MB, Rewitz KF (2013) Development 140:4730–4739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Parvy JP, Wang P, Garrido D, Maria A, Blais C, Poidevin M, Montagne J (2014) Development 141:3955–3965

    Article  CAS  PubMed  Google Scholar 

  36. Warren JT, Petryk A, Marques G, Jarcho M, Parvy JP, Dauphin-Villemant C, O’Connor MB, Gilbert LI (2002) Proc Natl Acad Sci USA 99:11043–11048

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Rewitz KF, Rybczynski R, Warren JT, Gilbert LI (2006) Biochem Soc Trans 34:1256–1260

    Article  CAS  PubMed  Google Scholar 

  38. Danielsen ET, Moeller ME, Dorry E, Komura-Kawa T, Fujimoto Y, Troelsen JT, Herder R, O’Connor MB, Niwa R, Rewitz KF (2014) PLoS Genet 10:e1004343

    Article  PubMed Central  PubMed  Google Scholar 

  39. Chung H, Sztal T, Pasricha S, Sridhar M, Batterham P, Daborn PJ (2009) Proc Natl Acad Sci USA 106:5731–5736

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Yoshiyama T, Namiki T, Mita K, Kataoka H, Niwa R (2006) Development 133:2565–2574

    Article  CAS  PubMed  Google Scholar 

  41. Lang M, Murat S, Clark AG, Couppil G, Blais C, Matzkin LM, Guittard E, Yoshiyama-Yanagawa T, Kataoka H, Niwa R, Lafont R, Dauphin-Villemant C, Orgogozo V (2012) Science 337:1658–1661

    Article  CAS  PubMed  Google Scholar 

  42. Sandoval H, Yao CK, Chen K, Jaiswal M, Donti T, Lin YQ, Bayat V, Xiong B, Zhang K, David G, Charng WL, Yamamoto S, Duraine L, Graham BH, Bellen HJ (2014) eLife 3:e03558

  43. Niwa YS, Niwa R (2014) Genes Genet Syst 89:27–34

    Article  CAS  PubMed  Google Scholar 

  44. Di Cara F, King-Jones K (2013) Curr Top Dev Biol 105:1–36

    Article  PubMed  Google Scholar 

  45. Ou Q, King-Jones K (2013) Curr Top Dev Biol 103:35–71

    Article  CAS  PubMed  Google Scholar 

  46. Hill RJ, Billas IM, Bonneton F, Graham LD, Lawrence MC (2013) Annu Rev Entomol 58:251–271

    Article  CAS  PubMed  Google Scholar 

  47. Yamanaka N, Rewitz KF, O’Connor MB (2013) Annu Rev Entomol 58:497–516

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Tennessen JM, Thummel CS (2011) Curr Biol 21:R750–757

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Nijhout HF, Riddiford LM, Mirth C, Shingleton AW, Suzuki Y, Callier V (2014) Dev Biol 3:113–134

    Google Scholar 

  50. Missirlis F, Kosmidis S, Brody T, Mavrakis M, Holmberg S, Odenwald WF, Skoulakis EM, Rouault TA (2007) Genetics 177:89–100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Gonzalez-Morales N, Mendoza-Ortiz MA, Blowes LM, Missirlis F, Riesgo-Escovar JR (2015) PLoS ONE 10:e0133499

    Article  PubMed Central  PubMed  Google Scholar 

  52. Gutierrez L, Zubow K, Nield J, Gambis A, Mollereau B, Lazaro FJ, Missirlis F (2013) Metallomics 5:997–1005

    Article  CAS  PubMed  Google Scholar 

  53. Ryder E, Ashburner M, Bautista-Llacer R, Drummond J, Webster J, Johnson G, Morley T, Chan YS, Blows F, Coulson D, Reuter G, Baisch H, Apelt C, Kauk A, Rudolph T, Kube M, Klimm M, Nickel C, Szidonya J, Maroy P, Pal M, Rasmuson-Lestander A, Ekstrom K, Stocker H, Hugentobler C, Hafen E, Gubb D, Pflugfelder G, Dorner C, Mechler B, Schenkel H, Marhold J, Serras F, Corominas M, Punset A, Roote J, Russell S (2007) Genetics 177:615–629

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Morin X, Daneman R, Zavortink M, Chia W (2001) Proc Natl Acad Sci USA 98:15050–15055

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Missirlis F, Holmberg S, Georgieva T, Dunkov BC, Rouault TA, Law JH (2006) Proc Natl Acad Sci USA 103:5893–5898

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Mehta A, Deshpande A, Bettedi L, Missirlis F (2009) Biochimie 91:1331–1334

    Article  CAS  PubMed  Google Scholar 

  57. Huang X, Suyama K, Buchanan J, Zhu AJ, Scott MP (2005) Development 132:5115–5124

    Article  CAS  PubMed  Google Scholar 

  58. Colombani J, Bianchini L, Layalle S, Pondeville E, Dauphin-Villemant C, Antoniewski C, Carré C, Noselli S, Léopold P (2005) Science 310:667–670

    Article  CAS  PubMed  Google Scholar 

  59. Froschauer EM, Rietzschel N, Hassler MR, Binder M, Schweyen RJ, Lill R, Mühlenhoff U, Wiesenberger G (2013) Biochem J 455:57–65

    Article  CAS  PubMed  Google Scholar 

  60. Da-Re C, Franzolin E, Biscontin A, Piazzesi A, Pacchioni B, Gagliani MC, Mazzotta G, Tacchetti C, Zordan M, Zeviani M, Bernardi P, Bianchi V, De Pitta C, Costa R (2014) J Biol Chem 289:7448–7459

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Thummel CS, Burtis KC, Hogness DS (1990) Cell 61:101–111

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported from the Carl Trygger’s foundation (#CTS12:281 and #KF14:4), the Swedish Research Council (#621-2011-5155) to M.I.L. and from the Consejo Nacional de Ciencia y Tecnología of Mexico (#179835) to F.M.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fanis Missirlis or Maria I. Lind.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Llorens, J.V., Metzendorf, C., Missirlis, F. et al. Mitochondrial iron supply is required for the developmental pulse of ecdysone biosynthesis that initiates metamorphosis in Drosophila melanogaster . J Biol Inorg Chem 20, 1229–1238 (2015). https://doi.org/10.1007/s00775-015-1302-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-015-1302-2

Keywords

Navigation