Skip to main content
Log in

Relation Between Cochlear Mechanics and Performance of Temporal Fine Structure-Based Tasks

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

ABSTRACT

This study examined whether the mechanical characteristics of the cochlea could influence individual variation in the ability to use temporal fine structure (TFS) information. Cochlear mechanical functioning was evaluated by swept-tone evoked otoacoustic emissions (OAEs), which are thought to comprise linear reflection by micromechanical impedance perturbations, such as spatial variations in the number or geometry of outer hair cells, on the basilar membrane (BM). Low-rate (2 Hz) frequency modulation detection limens (FMDLs) were measured for carrier frequency of 1000 Hz and interaural phase difference (IPD) thresholds as indices of TFS sensitivity and high-rate (16 Hz) FMDLs and amplitude modulation detection limens (AMDLs) as indices of sensitivity to non-TFS cues. Significant correlations were found among low-rate FMDLs, low-rate AMDLs, and IPD thresholds (R = 0.47–0.59). A principal component analysis was used to show a common factor that could account for 81.1, 74.1, and 62.9 % of the variance in low-rate FMDLs, low-rate AMDLs, and IPD thresholds, respectively. An OAE feature, specifically a characteristic dip around 2–2.5 kHz in OAE spectra, showed a significant correlation with the common factor (R = 0.54). High-rate FMDLs and AMDLs were correlated with each other (R = 0.56) but not with the other measures. The results can be interpreted as indicating that (1) the low-rate AMDLs, as well as the IPD thresholds and low-rate FMDLs, depend on the use of TFS information coded in neural phase locking and (2) the use of TFS information is influenced by a particular aspect of cochlear mechanics, such as mechanical irregularity along the BM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

REFERENCES

  • Anderson DJ, Rose JE, Hind JE, Brugge JF (1971) Temporal position of discharges in single auditory nerve fibers within the cycle of a sine-wave stimulus: Frequency and intensity effects. J Acoust Soc Am 49:113–11139

  • Bharadwaj HM, Masud S, Mehraei G, et al (2015) Individual Differences Reveal Correlates of Hidden Hearing Deficits. J Neurosci 35:2161–2172

  • Bennett CL, Ozdamar O (2010) Swept-tone transient-evoked otoacoustic emissions. J Acoust Soc Am 128:1833–1844

    Article  PubMed  Google Scholar 

  • Buss E, Hall JW 3rd, Grose JH (2004) Temporal fine-structure cues to speech and pure tone modulation in observers with sensorineural hearing loss. Ear Hear 25:242–250

    Article  PubMed  Google Scholar 

  • Carlyon RP, Long CJ, Micheyl C (2012) Across-channel timing differences as a potential code for the frequency of pure tones. J Assoc Res Otolaryngol 13:159–171

    Article  PubMed  Google Scholar 

  • Carney LH (1994) Spatio-temporal encoding of sound level: models for normal encoding and recruitment of loudness. Hear Res 76:31–44

    Article  CAS  PubMed  Google Scholar 

  • Carney LH, Heinz MG, Evilsizer ME, Gilkey RH, Colburn HS (2002) Auditory phase opponency: a temporal model for masked detection at low frequencies. Acta Acust- Acust 88:334–346

    Google Scholar 

  • Choi Y-S, Lee S-Y, Parham K, et al. (2008) Stimulus-frequency otoacoustic emission: measurements in humans and simulations with an active cochlear model. J Acoust Soc Am 123:2651–2669

    Article  PubMed  PubMed Central  Google Scholar 

  • Colburn HS, Carney LH, Heinz MG (2003) Quantifying the information in auditory-nerve responses for level discrimination. J Assoc Res Otolaryngol 4:294–311

  • Cook RD (1977) Detection of influential observation in linear regression. Technometrics 19:15–18

    Google Scholar 

  • Elliott SJ, Ku EM, Lineton B (2007) A state space model for cochlear mechanics. J Acoust Soc Am 122:2759–2771

    Article  PubMed  Google Scholar 

  • Epp B, Verhey JL, Mauermann M (2010) Modeling cochlear dynamics: interrelation between cochlea mechanics and psychoacoustics. J Acoust Soc Am 128:1870–1883

    Article  PubMed  Google Scholar 

  • Ernst SMA, Moore BCJ (2010) Mechanisms underlying the detection of frequency modulation. J Acoust Soc Am 128:3642–3648

    Article  PubMed  Google Scholar 

  • Feeney MP, Grant IL, Marryott LP (2003) Wideband energy reflectance measurements in adults with middle-ear disorders. J Speech Lang Hear Res 46:901–911

    Article  PubMed  Google Scholar 

  • Gilbert G, Lorenzi C (2006) The ability of listeners to use recovered envelope cues from speech fine structure. J Acoust Soc Am 119:2438–2444

    Article  PubMed  Google Scholar 

  • Grose JH, Mamo SK (2010) Processing of temporal fine structure as a function of age. Ear Hear 31:755–760

    Article  PubMed  PubMed Central  Google Scholar 

  • Grose JH, Mamo SK (2012) Frequency modulation detection as a measure of temporal processing: age-related monaural and binaural effects. Hear Res 294:49–54

    Article  PubMed  PubMed Central  Google Scholar 

  • Heinz MG, Colburn HS, Carney LH (2001) Rate and timing cues associated with the cochlear amplifier: level discrimination based on monaural cross-frequency coincidence detection. J Acoust Soc Am 110:2065–2084

    Article  CAS  PubMed  Google Scholar 

  • Heise SJ, Mauermann M, Verhey JL (2009) Threshold fine structure affects amplitude modulation perception. J Acoust Soc Am 125:EL33–EL38

    Article  PubMed  Google Scholar 

  • Henning GB (1983) Lateralization of transient signals and types of delay. In: Klinke DR, Hartmann DR (eds) Hear. — Physiol. Bases Psychophys. Springer, Berlin Heidelberg, pp. 196–201

    Chapter  Google Scholar 

  • Hilger AW, Furness DN, Wilson JP (1995) The possible relationship between transient evoked otoacoustic emissions and organ of Corti irregularities in the guinea pig. Hear Res 84:1–11

    Article  CAS  PubMed  Google Scholar 

  • Hopkins K, Moore BCJ (2011) The effects of age and cochlear hearing loss on temporal fine structure sensitivity, frequency selectivity, and speech reception in noise. J Acoust Soc Am 130:334–349

    Article  PubMed  Google Scholar 

  • Joris PX, Schreiner CE, Rees A (2004) Neural Processing of Amplitude-Modulated Sounds. Physiol Rev 84:541–577

  • Kalluri R, Shera CA (2013) Measuring stimulus-frequency otoacoustic emissions using swept tones. J Acoust Soc Am 134:356–368

  • Keefe DH (1998) Double-evoked otoacoustic emissions. I Measurement theory and nonlinear coherence. J Acoust Soc Am 103:3489–3498

    Google Scholar 

  • Keefe DH, Ling R, Bulen JC (1992) Method to measure acoustic impedance and reflection coefficient. J Acoust Soc Am 91:470–485

    Article  CAS  PubMed  Google Scholar 

  • Kemp DT (1978) Stimulated acoustic emissions from within the human auditory system. J Acoust Soc Am 64:1386–1391

  • Kohlrausch A, Fassel R, Dau T (2000) The influence of carrier level and frequency on modulation and beat-detection thresholds for sinusoidal carriers. J Acoust Soc Am 108:723–734

    Article  PubMed  Google Scholar 

  • Kujawa SG, Liberman MC (2009) Adding insult to injury: Cochlear nerve degeneration after “Temporary” noise-induced hearing loss. J Neurosci 29:14077–14085

  • Ku EM, Elliott SJ, Lineton B (2009) Limit cycle oscillations in a nonlinear state space model of the human cochlea. J Acoust Soc Am 126:739–750

    Article  PubMed  Google Scholar 

  • Lachenbruch PA, Mickey MR (1968) Estimation of error rates in discriminant analysis. Technometrics 10:1–11

    Article  Google Scholar 

  • Levitt H (1971) Transformed up-down methods in psychoacoustics. J Acoust Soc Am 49:467–477

    Article  Google Scholar 

  • Lineton B, Lutman ME (2003) Modeling the effect of suppression on the periodicity of stimulus frequency otoacoustic emissions. J Acoust Soc Am 114:859–870

    Article  PubMed  Google Scholar 

  • Loeb GE, White MW, Merzenich MM (1983) Spatial cross-correlation. Biol Cybern 47:149–163

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Poveda EA, Barrios P (2013) Perception of stochastically undersampled sound waveforms: a model of auditory deafferentation. Front Neurosci 7:124

  • Maison SF, Usubuchi H, Liberman MC (2013) Efferent feedback minimizes cochlear neuropathy from moderate noise exposure. J Neurosci 33:5542–5552

  • Moore BCJ, Sek A (1995) Effects of carrier frequency, modulation rate, and modulation waveform on the detection of modulation and the discrimination of modulation type (amplitude modulation versus frequency modulation). J Acoust Soc Am 97:2468–2478

  • Moore BCJ, Sek A (1996) Detection of frequency modulation at low modulation rates: evidence for a mechanism based on phase locking. J Acoust Soc Am 100:2320–2331

    Article  CAS  PubMed  Google Scholar 

  • Moore BCJ, Vickers DA, Mehta A (2012) The effects of age on temporal fine structure sensitivity in monaural and binaural conditions. Int J Audiol 51:715–721

    Article  PubMed  Google Scholar 

  • Morise M, Irino T, Banno H (2007) Warped-TSP: An acoustic measurement signal robust to background noise and harmonic distortion. Electron Comm Jpn Pt III 90:18–26

  • Neely ST, Kim DO (1986) A model for active elements in cochlear biomechanics. J Acoust Soc Am 79:1472–1480

    Article  CAS  PubMed  Google Scholar 

  • Otsuka S, Furukawa S, Yamagishi S, et al. (2014) Interindividual variation of sensitivity to frequency modulation: its relation with click-evoked and distortion product otoacoustic emissions. J Assoc Res Otolaryngol 15:175–186

    Article  PubMed  PubMed Central  Google Scholar 

  • Oxenham AJ, Shera CA (2003) Estimates of human cochlear tuning at low levels using forward and Simultaneous Masking. J Assoc Res Otolaryngol 4:541–554

  • Ruggero MA, Rich NC, Recio A, et al (1997) Basilar-membrane responses to tones at the base of the chinchilla cochlea. J Acoust Soc Am 101:2151–2163

  • Sek A, Moore BCJ (1995) Frequency discrimination as a function of frequency, measured in several ways. J Acoust Soc Am 97:2479–2486.

  • Schairer KS, Fitzpatrick D, Keefe DH (2003) Input-output functions for stimulus-frequency otoacoustic emissions in normal-hearing adult ears. J Acoust Soc Am 114:944–966

    Article  PubMed  Google Scholar 

  • Shamma SA (1989) Stereausis: binaural processing without neural delays. J Acoust Soc Am 86:989–1006

    Article  CAS  PubMed  Google Scholar 

  • Siegel JH, Hirohata ET (1994) Sound calibration and distortion product otoacoustic emissions at high frequencies. Hear Res 80:146–152

    Article  CAS  PubMed  Google Scholar 

  • Sisto R, Moleti A (2005) On the large-scale spectral structure of otoacoustic emissions. J Acoust Soc Am 117:1234–1240

    Article  PubMed  Google Scholar 

  • Strelcyk O, Dau T (2009) Relations between frequency selectivity, temporal fine-structure processing, and speech reception in impaired hearing. J Acoust Soc Am 125:3328–3345

    Article  PubMed  Google Scholar 

  • Tognola G, Grandori F, Ravazzani P (1997) Time-frequency distributions of click-evoked otoacoustic emissions. Hear Res 106:112–122

    Article  CAS  PubMed  Google Scholar 

  • Verhulst S, Dau T, Shera CA (2012) Nonlinear time-domain cochlear model for transient stimulation and human otoacoustic emission. J Acoust Soc Am 132:3842–3848

    Article  PubMed  PubMed Central  Google Scholar 

  • Wit HP, van Dijk P, Avan P (1994) Wavelet analysis of real ear and synthesized click evoked otoacoustic emissions. Hear Res 73:141–147

    Article  CAS  PubMed  Google Scholar 

  • Wright A (1984) Dimensions of the cochlear stereocilia in man and the guinea pig. Hear Res 13:89–98

  • Zweig G, Shera CA (1995) The origin of periodicity in the spectrum of evoked otoacoustic emissions. J Acoust Soc Am 98:2018–2047

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are very grateful to Brian C. J. Moore for his helpful comments on an earlier version of the manuscript and Christian Lorenzi for helpful and stimulating discussions. We thank Julie Arenberg Bierer, the associate editor, and two anonymous reviewers for their helpful comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sho Otsuka.

Ethics declarations

Conflict of Interest

We declare that we have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otsuka, S., Furukawa, S., Yamagishi, S. et al. Relation Between Cochlear Mechanics and Performance of Temporal Fine Structure-Based Tasks. JARO 17, 541–557 (2016). https://doi.org/10.1007/s10162-016-0581-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-016-0581-9

KEYWORDS

Navigation