Skip to main content
Log in

Tumor-resident adenosine-producing mesenchymal stem cells as a potential target for cancer treatment

  • Review Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

The development of new therapies based on tumor biology is one of the main topics in cancer treatment. In this regard, investigating the microenvironment and cellular composition of the tumor is of particular interest. Mesenchymal stem cells (MSCs) are a major group of cells in the tumor tissue and play a critical role in tumor growth and development. Investigating the mechanisms by which MSCs influence tumor growth and progression is very useful in establishing new therapeutic approaches. MSCs have some immunological capacities, including anti-inflammatory, immune-regulatory, and immune-suppressive abilities, which help the tumor growth in the inflammatory condition. They can suppress the proliferation and activation of CD4 + T cells and direct them toward the regulatory phenotype through the release of some factors such as indoleamine 2,3-dioxygenase, prostaglandin E2, and HO-1, PD-1 ligands (PD-L1 and PD-L2) and promote tolerance and apoptosis. Besides, these cells are able to produce adenosine. Adenosine has a key role in controlling the immune system by signaling through receptors located on the surface of immune cells. It plays a very essential role in tumor growth and progression. In the present review, we investigate and introduce adenosine-producing mesenchymal stem cells as a potential target for cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Albini A, Sporn MB. The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer. 2007;7(2):139–47.

    CAS  PubMed  Google Scholar 

  2. Rohban R, Pieber TR. Mesenchymal stem and progenitor cells in regeneration: tissue specificity and regenerative potential. Stem Cells Int. 2017. https://doi.org/10.1155/2017/5173732.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Han Y, et al. Mesenchymal stem cells for regenerative medicine. Cells. 2019;8(8):886.

    CAS  PubMed Central  Google Scholar 

  4. Guerrouahen BS, et al. Enhancing mesenchymal stromal cell immunomodulation for treating conditions influenced by the immune system. Stem cells Int. 2019. https://doi.org/10.1155/2019/7219297.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Poggi A, Giuliani M. Mesenchymal stromal cells can regulate the immune response in the tumor microenvironment. Vaccines. 2016;4(4):41.

    PubMed Central  Google Scholar 

  6. Melief SM, et al. Multipotent stromal cells induce human regulatory T cells through a novel pathway involving skewing of monocytes toward anti-inflammatory macrophages. Stem Cells. 2013;31(9):1980–91.

    CAS  PubMed  Google Scholar 

  7. Mougiakakos D, et al. The impact of inflammatory licensing on heme oxygenase-1–mediated induction of regulatory T cells by human mesenchymal stem cells. Blood. 2011;117(18):4826–35.

    CAS  PubMed  Google Scholar 

  8. Davies LC, et al. Mesenchymal stromal cell secretion of programmed death-1 ligands regulates T cell mediated immunosuppression. Stem cells. 2017;35(3):766–76.

    CAS  PubMed  Google Scholar 

  9. Zhang B. CD73: a novel target for cancer immunotherapy. Can Res. 2010;70(16):6407–11.

    CAS  Google Scholar 

  10. Young A, et al. Targeting cancer-derived adenosine: new therapeutic approaches. Cancer Discov. 2014;4(8):879–88.

    CAS  PubMed  Google Scholar 

  11. Arab S, et al. Increased efficacy of a dendritic cell–based therapeutic cancer vaccine with adenosine receptor antagonist and CD73 inhibitor. Tumor Biol. 2017;39(3):1010428317695021.

    Google Scholar 

  12. Karnoub AE, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007;449(7162):557–63.

    CAS  PubMed  Google Scholar 

  13. Shi Y, et al. Tumour-associated mesenchymal stem/stromal cells: emerging therapeutic targets. Nat Rev Drug Discov. 2017;16(1):35–52.

    CAS  PubMed  Google Scholar 

  14. Ren G, et al. Tumor resident mesenchymal stromal cells endow naive stromal cells with tumor-promoting properties. Oncogene. 2014;33(30):4016–20.

    CAS  PubMed  Google Scholar 

  15. Ridge SM, Sullivan FJ, Glynn SA. Mesenchymal stem cells: key players in cancer progression. Mol cancer. 2017;16(1):31.

    PubMed  PubMed Central  Google Scholar 

  16. Krueger TE, et al. Tumor-infiltrating mesenchymal stem cells: Drivers of the immunosuppressive tumor microenvironment in prostate cancer? Prostate. 2019;79(3):320–30.

    CAS  PubMed  Google Scholar 

  17. Li W, et al. Gastric cancer-derived mesenchymal stem cells prompt gastric cancer progression through secretion of interleukin-8. J Exp Clin Cancer Res. 2015;34(1):1–15.

    Google Scholar 

  18. Kansy BA, et al. The bidirectional tumor-mesenchymal stromal cell interaction promotes the progression of head and neck cancer. Stem Cell Res Ther. 2014;5(4):95.

    PubMed  PubMed Central  Google Scholar 

  19. Shahar T, et al. Percentage of mesenchymal stem cells in high-grade glioma tumor samples correlates with patient survival. Neuro-oncology. 2017;19(5):660–8.

    CAS  PubMed  Google Scholar 

  20. Qi J, et al. Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth through hedgehog signaling pathway. Cell Physiol Biochem. 2017;42(6):2242–54.

    CAS  PubMed  Google Scholar 

  21. Wang S, et al. Exosomes secreted by mesenchymal stromal/stem cell-derived adipocytes promote breast cancer cell growth via activation of Hippo signaling pathway. Stem Cell Res Ther. 2019;10(1):117.

    PubMed  PubMed Central  Google Scholar 

  22. Thiery JP. Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2(6):442–54.

    CAS  PubMed  Google Scholar 

  23. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Investig. 2009;119(6):1420–8.

    CAS  PubMed  Google Scholar 

  24. Tang H, et al. The metastatic phenotype shift toward myofibroblast of adipose-derived mesenchymal stem cells promotes ovarian cancer progression. Carcinogenesis. 2020;41(2):182–93.

    CAS  PubMed  Google Scholar 

  25. Valeta-Magara A, et al. Inflammatory breast cancer promotes development of M2 tumor-associated macrophages and cancer mesenchymal cells through a complex chemokine network. Can Res. 2019;79(13):3360–71.

    CAS  Google Scholar 

  26. Lytle NK, Barber AG, Reya T. Stem cell fate in cancer growth, progression and therapy resistance. Nat Rev Cancer. 2018;18(11):669–80.

    CAS  PubMed  Google Scholar 

  27. Takebe N, et al. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin oncol. 2011;8(2):97.

    CAS  PubMed  Google Scholar 

  28. Rahmatizadeh F, et al. Bidirectional and opposite effects of naïve mesenchymal stem cells on tumor growth and progression. Adv Pharm Bull. 2019;9(4):539.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee HY, Hong IS. Double-edged sword of mesenchymal stem cells: cancer-promoting versus therapeutic potential. Cancer Sci. 2017;108(10):1939–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Valkenburg KC, de Groot AE, Pienta KJ. Targeting the tumour stroma to improve cancer therapy. Nat Rev Clin Oncol. 2018;15(6):366–81.

    PubMed  PubMed Central  Google Scholar 

  31. Yin L, et al. Gastric-cancer-derived mesenchymal stem cells: a promising target for resveratrol in the suppression of gastric cancer metastasis. Hum Cell. 2020;33:652–62.

    CAS  PubMed  Google Scholar 

  32. Stagg J, et al. Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis. Proc Natl Acad Sci. 2010;107(4):1547–52.

    CAS  PubMed  Google Scholar 

  33. Perrot I, et al. Blocking antibodies targeting the CD39/CD73 immunosuppressive pathway unleash immune responses in combination cancer therapies. Cell Rep. 2019;27(8):2411–25.

    CAS  PubMed  Google Scholar 

  34. Liu H, Xia Y. Beneficial and detrimental role of adenosine signaling in diseases and therapy. J Appl Physiol. 2015;119(10):1173–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Borea PA, et al. Pharmacology of adenosine receptors: the state of the art. Physiol Rev. 2018;98(3):1591–625.

    CAS  PubMed  Google Scholar 

  36. Katsuta E, et al. High CD73 expression, regulated by estrogen signaling, associates with cancer aggressiveness in estrogen receptor (+) breast cancer. Cancer Res. 2019;79(13 Supplement):5200. https://doi.org/10.1158/1538-7445.AM2019-5200.

    Article  Google Scholar 

  37. Ono K, et al. Immunohistochemical CD73 expression status in gastrointestinal neuroendocrine neoplasms: a retrospective study of 136 patients. Oncol Lett. 2018;15(2):2123–30.

    PubMed  Google Scholar 

  38. Mandapathil M, et al. CD73 expression in lymph node metastases in patients with head and neck cancer. Acta Otolaryngol. 2018;138(2):180–4.

    CAS  PubMed  Google Scholar 

  39. Lupia M, et al. CD73 regulates stemness and epithelial-mesenchymal transition in ovarian cancer-initiating cells. Stem Cell Rep. 2018;10(4):1412–25.

    CAS  Google Scholar 

  40. Jiang T, et al. Comprehensive evaluation of NT5E/CD73 expression and its prognostic significance in distinct types of cancers. BMC cancer. 2018;18(1):1–10.

    CAS  Google Scholar 

  41. Stone JK, et al. Hypoxia induces cancer cell-specific chromatin interactions and increases MALAT1 expression in breast cancer cells. J Biol Chem. 2019;294(29):11213–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Li J, et al. CD39/CD73 upregulation on myeloid-derived suppressor cells via TGF-β-mTOR-HIF-1 signaling in patients with non-small cell lung cancer. Oncoimmunology. 2017;6(6):e1320011.

    PubMed  PubMed Central  Google Scholar 

  43. Kheshtchin N, et al. Inhibition of HIF-1α enhances anti-tumor effects of dendritic cell-based vaccination in a mouse model of breast cancer. Cancer Immunol Immunother. 2016;65(10):1159–67.

    CAS  PubMed  Google Scholar 

  44. Antonioli L, et al. CD39 and CD73 in immunity and inflammation. Trends in Mol Med. 2013;19(6):355–67.

    CAS  Google Scholar 

  45. Schneider E, et al. Generation and function of non-cell-bound CD73 in inflammation. Front Immunol. 2019;10:1729.

    PubMed  PubMed Central  Google Scholar 

  46. Ujházy P, et al. Evidence for the involvement of ecto-5′-nucleotidase (CD73) in drug resistance. Int J Cancer. 1996;68(4):493–500.

    PubMed  Google Scholar 

  47. Sajadpoor Z, et al. Valproic acid promotes apoptosis and cisplatin sensitivity through downregulation of H19 noncoding RNA in ovarian A2780 cells. Appl Biochem Biotechnol. 2018;185(4):1132–44.

    CAS  PubMed  Google Scholar 

  48. Khayami R, et al. Role of adenosine signaling in the pathogenesis of head and neck cancer. J Cell Biochem. 2018;119(10):7905–12.

    CAS  PubMed  Google Scholar 

  49. Asgharzade S, et al. The effect of oleuropein on apoptotic pathway regulators in breast cancer cells. Eur J Pharm. 2020;886:173509.

    CAS  Google Scholar 

  50. Amini-Farsani Z, et al. MiR-221/222 promote chemoresistance to cisplatin in ovarian cancer cells by targeting PTEN/PI3K/AKT signaling pathway. Cytotechnology. 2018;70(1):203–13.

    CAS  PubMed  Google Scholar 

  51. Arab S, Hadjati J. Adenosine blockage in tumor microenvironment and improvement of cancer immunotherapy. Immune Netw. 2019;19(4):e23.

    PubMed  PubMed Central  Google Scholar 

  52. Jadidi-Niaragh F, et al. Downregulation of CD73 in 4T1 breast cancer cells through siRNA-loaded chitosan-lactate nanoparticles. Tumor Biol. 2016;37(6):8403–12.

    CAS  Google Scholar 

  53. Gharibi B, et al. Adenosine receptor subtype expression and activation influence the differentiation of mesenchymal stem cells to osteoblasts and adipocytes. J Bone Miner Res. 2011;26(9):2112–24.

    CAS  PubMed  Google Scholar 

  54. Sattler C, et al. Inhibition of T-cell proliferation by murine multipotent mesenchymal stromal cells is mediated by CD39 expression and adenosine generation. Cell Transpl. 2011;20(8):1221–30.

    Google Scholar 

  55. Saldanha-Araujo F, et al. Mesenchymal stromal cells up-regulate CD39 and increase adenosine production to suppress activated T-lymphocytes. Stem Cell Res. 2011;7(1):66–74.

    CAS  PubMed  Google Scholar 

  56. Chen X, et al. CD73 pathway contributes to the immunosuppressive ability of mesenchymal stem cells in intraocular autoimmune responses. Stem Cells Dev. 2016;25(4):337–46.

    PubMed  Google Scholar 

  57. Ávila-Ibarra LR, et al. Mesenchymal stromal cells derived from normal cervix and cervical cancer tumors increase CD73 expression in cervical cancer cells through TGF-β1 production. Stem Cells Dev. 2019;28(7):477–88.

    PubMed  Google Scholar 

  58. Samanta D, et al. Chemotherapy induces enrichment of CD47+/CD73+/PDL1+ immune evasive triple-negative breast cancer cells. Proc Natl Acad Sci. 2018;115(6):E1239–48.

    CAS  PubMed  Google Scholar 

  59. Ayob AZ, Ramasamy TS. Cancer stem cells as key drivers of tumour progression. J Biomed Sci. 2018;25(1):1–18.

    Google Scholar 

  60. Yoe J, et al. Capicua restricts cancer stem cell-like properties in breast cancer cells. Oncogene. 2020;39(17):3489–506.

    CAS  PubMed  Google Scholar 

  61. Simón-Carrasco L, et al. The Capicua tumor suppressor: a gatekeeper of Ras signaling in development and cancer. Cell Cycle. 2018;17(6):702–11.

    PubMed  PubMed Central  Google Scholar 

  62. Xu M, et al. (2018) Role of p38γ MAPK in regulation of EMT and cancer stem cells. Biochimica et Biophysica Acta (BBA)-Mol Basis Dis. 1864;11:3605–17.

    Google Scholar 

  63. Xie C, et al. Tobacco smoke induced hepatic cancer stem cell-like properties through IL-33/p38 pathway. J Exp Clin Cancer Res. 2019;38(1):1–13.

    Google Scholar 

  64. Yagi H, Kitagawa Y. The role of mesenchymal stem cells in cancer development. Fron Genet. 2013;4:261.

    Google Scholar 

  65. Tian K, et al. p38 MAPK contributes to the growth inhibition of leukemic tumor cells mediated by human umbilical cord mesenchymal stem cells. Cell Physiol Biochem. 2010;26(6):799–808.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the deputy of Shahrekord University of Medical Sciences and Semnan University of medical sciences.

Funding

This study was supported by a grant from Semnan University of Medical Sciences (Grant number: 1614).

Author information

Authors and Affiliations

Authors

Contributions

All authors collaborated in the writing of the manuscript. Samira Asgharzade and Akram Alizadeh wrote the draft of manuscript, and Samaneh Arab was the corresponding author who edited the final version of manuscript.

Corresponding author

Correspondence to Samira Asgharzade.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

This paper is a review article and has not received ethical approval.

Informed consent

This paper is a review article, and there was no need for informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arab, S., Alizadeh, A. & Asgharzade, S. Tumor-resident adenosine-producing mesenchymal stem cells as a potential target for cancer treatment. Clin Exp Med 21, 205–213 (2021). https://doi.org/10.1007/s10238-020-00674-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-020-00674-9

Keywords

Navigation