Skip to main content
Log in

Functionalization of microfluidic devices for investigation of liquid crystal flows

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Systematic studies of thermotropic liquid crystals in confinement, such as liquid crystals in microfluidic channels, require control of the anchoring conditions on the surfaces. Especially for the case of uniform planar anchoring, the standard method involves a mechanical treatment (rubbing) of the surface that is not applicable to microfluidic devices. In the present study, we report methods for the achievement of well-defined anchoring conditions for liquid crystals in microfluidic channels consisting of polydimethylsiloxane and glass. Various physico-chemical techniques enable to establish homeotropic, degenerate planar, uniform planar, and hybrid anchoring conditions on the surface of the channel walls. We characterize the treated surfaces in terms of wettability and liquid crystal anchoring and determine the director field in the microchannels for the different anchoring configurations using polarizing optical microscopy and fluorescence confocal polarization microscopy. The relevance of the surface anchoring for the flow behavior of the liquid crystal in the microchannel is demonstrated by studying the onset of defect-mediated chaotic-like flow at high Ericksen numbers for the different anchoring cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bai Y, Abbott NL (2011) Recent advances in colloidal and interfacial phenomena involving liquid crystals. Langmuir 27:5719–5738

    Article  Google Scholar 

  • de Gennes PG, Prost J (1995) The physics of liquid crystals. Oxford University Press, Oxford

  • Denniston C, Orlandini E, Yeomans JM (2000) Simulations of liquid crystal hydrodynamics in the isotropic and nematic phases. Europhys Lett 52:481–487

    Article  Google Scholar 

  • Denniston C, Orlandini E, Yeomans JM (2001) Phase ordering in nematic liquid crystals. Phys Rev E 64:021701(11)

    Google Scholar 

  • Domachuk P, Tsioris K, Omenetto FG, Kaplan D (2010) Bio-microfluidics: biomaterials and biomimetic designs. Adv Mater 22:249–260

    Article  Google Scholar 

  • El-Ali J, Sorger PK, Jensen KF (2006) Cells on chips. Nature 442:403–411

    Article  Google Scholar 

  • Feng J, Leal LG (1999) Pressure-driven channel flows of a model liquid-crystalline polymer. Phys Fluids 11:2821–2835

    Article  MATH  Google Scholar 

  • Fernandez-Nieves A, Link DR, Marquez M, Weitz DA (2007a) Topological changes in bipolar nematic droplets under flow. Phys Rev Lett 98:087801(4)

    Google Scholar 

  • Fernandez-Nieves A, Vitelli V, Utada AS, Link DR, Márquez M, Nelson DR, Weitz DA (2007b) Novel defect structures in nematic liquid crystal shells. Phys Rev Lett 99:157801(5)

  • Gerus I, Glushchenko A, Kwon SB, Reshetnyak V, Reznikov Y (2001) Anchoring of a liquid crystal on a photoaligning layer with varying surface morphology. Liq Cryst 28:1709–1713

    Article  Google Scholar 

  • Gettelfinger BT, Moreno-Razo JA, Koenig GM Jr, Hernandez-Ortiz JP, Abbott NL, de Pablo JJ (2010) Flow induced deformation of defects around nanoparticles and nanodroplets suspended in liquid crystals. Soft Matter 6:896–901

    Article  Google Scholar 

  • Gähwiller C (1972) Temperature dependence of flow alignment in nematic liquid crystals. Phys Rev Lett 28:1554–1556

    Article  Google Scholar 

  • Goodby JW, Saez IM, Cowling SJ, Görtz V, Draper M, Hall AW, Sia S, Cosquer G, Lee SE, Raynes EP (2008) Transmission and amplification of information and properties in nanostructured liquid crystals. Angew Chem Int Ed 47:2754–2787

    Article  Google Scholar 

  • Gvozdovskyy I, Kurioz Y, Reznikov Y (2009) Exposure and temperature dependences of contact angle of liquid crystals on photoaligning surface. Opt Electron Rev 17:116–119

    Article  Google Scholar 

  • Hamlington BD, Steinhaus B, Feng JJ, Link D, Shelly MJ, Shen AQ (2007) Liquid crystal droplet production in a microfluidic device. Liq Cryst 34:861–870

    Article  Google Scholar 

  • Holmes CJ, Cornford SL, Sambles JR (2009) Conoscopic observation of director reorientation during poiseuille flow of a nematic liquid crystal. Appl Phys Lett 95:171114(3)

    Google Scholar 

  • Holmes CJ, Cornford SL, Sambles JR (2010) Small surface pretilt strikingly affects the director profile during poiseuille flow of a nematic liquid crystal. Phys. Rev. Lett 104:248301(4)

    Google Scholar 

  • Horn BLV, Winter HH (2001) Analysis of the conoscopic measurement for uniaxial liquid-crystal tilt angles. Appl Opt 40:2089–2094

    Article  Google Scholar 

  • Humar M, Muševič I (2010) 3d microlasers from self-assembled cholesteric liquid-crystal microdroplets. Opt Express 18:26995–27003

    Article  Google Scholar 

  • Humar M, Ravnik M, Pajk S, Muševič I (2009) Electrically tunable liquid crystal optical microresonators. Nat Photonics 3:595–600

    Article  Google Scholar 

  • Hung FR, Gettelfinger BT, Koenig GM, Abbott NL, de Pablo JJ (2007) Nanoparticles in nematic liquid crystals: Interactions with nanochannels. J Chem Phys 127:124702(10)

    Google Scholar 

  • Jenkins JT (1978) Flows of nematic liquid crystals. Annu Rev Fluid Mech 10:197–219

    Article  Google Scholar 

  • Jewell SA, Cornford SL, Yang F, Cann PS, Sambles JR (2009) Flow-driven transition and associated velocity profiles in a nematic liquid-crystal cell. Phys Rev E 80:0741706(5)

    Google Scholar 

  • Jérôme B (1991) Surface effects and anchoring in liquid crystals. Rep Prog Phys 54:391–451

    Article  Google Scholar 

  • Kim J, Chaudhury MK, Owen MJ, Orbeck T (2001) The mechanisms of hydrophobic recovery of polydimethylsiloxane elastomers exposed to partial electrical discharges. J Coll Int Sci 244:200–207

    Google Scholar 

  • Kim B, Peterson ETK, Papautsky I (2004) Long-term stability of plasma oxidized pdms surfaces. Proc IEEE Eng Med Biol Soc 7:5013–5016

    Google Scholar 

  • Kim YH, Yoon DK, Jeong HS, Jung HT (2010) Self-assembled periodic liquid crystal defects array for soft lithographic template. Soft Matter 6:1426–1431

    Article  Google Scholar 

  • Krekhov AP, Toth TBP, Buka A, Kramer L (2000) Nematic liquid crystals under oscillatory shear flow. Phys Rep 337:171–192

    Article  Google Scholar 

  • Lee JN, Park C, Whitesides GM (2003) Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal Chem 75:6544–6554

    Article  Google Scholar 

  • Li LYCM, Zhou Q, Luong JH (2007) Poly(vinyl alcohol) functionalized poly(dimethylsiloxane) solid surface for immunoassay. Bioconj Chem 18:281–284

    Article  Google Scholar 

  • Lopez-Leon T, Fernandez-Nieves A (2009) Topological transformations in bipolar shells of nematic liquid crystals. Phys Rev E 79:021707(5)

    Google Scholar 

  • Marre S, Jensen KF (2010) Synthesis of micro and nanostructures in microfluidic systems. Chem Soc Rev 39:1183–1202

    Article  Google Scholar 

  • McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu H, Schueller OJA, Whitesides GM (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21:27–40

    Article  Google Scholar 

  • McDonald JC, Whitesides GM (2002) Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35:491–499

    Article  Google Scholar 

  • Muševič I, Škarabot M (2008) Self-assembly of nematic colloids. Soft Matter 4:195–199

    Article  Google Scholar 

  • Muševič I, Škarabot M, Tkalec U, Ravnik M, Žumer S (2006) Two-dimensional nematic colloidal crystals self-assembled by topological defects. Science 313:954–958

    Article  Google Scholar 

  • Nghe P, Terriac E, Schneider M, Li ZZ, Cloitre M, Abecassis B, Tabeling P (2011) Trends in microfluidics with complex fluids. Lab Chip 11:788–794

    Article  Google Scholar 

  • Oswald P, Pieranski P (2005) Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments. Taylor & Francis, London

  • Pfohl T, Mugele F, Seemann R, Herminghaus S (2003) Microfluidics and complex fluids. Chem Phys Chem 4:1291–1298

    Article  Google Scholar 

  • Pieranski P, Guyon E (1974) Two shear-flow regimes in nematic p-n-hexyloxybenzilidene-p′-aminobenzonitrile. Phys Rev Lett 32:924–926

    Article  Google Scholar 

  • Poulin P, Stark H, Lubensky TC, Weitz DA (1997) Novel colloidal interactions in anisotropic fluids. Science 275:1770–1773

    Article  Google Scholar 

  • Price AD, Schwartz DK (2006) Anchoring of a nematic liquid crystal on a wettability gradient. Langmuir 22:9753–9759

    Article  Google Scholar 

  • Rasing T, Musevic I (2004) Surfaces and interfaces of liquid crystals. Springer, Berlin

  • Rastegar A, Skarabot M, Blij B, Rasing T (2001) Mechanism of liquid crystal alignment on submicron patterned surfaces. J Appl Phys 89:960–968

    Article  Google Scholar 

  • Rey AD, Denn MM (2002) Dynamical phenomena in liquid-crystalline materials. Annu Rev Fluid Mech 34:233–266

    Article  MathSciNet  Google Scholar 

  • Sengupta A, Herminghaus S, Bahr C (2011a) Nematic liquid crystals and nematic colloids in microfluidic environment. Mol Cryst Liq Cryst 547:203–212

    Article  Google Scholar 

  • Sengupta A, Tkalec U, Bahr C (2011b) Nematic textures in microfluidic environment. Soft Matter 7:6542–6549

    Article  Google Scholar 

  • Shiyanovskii IISSV, Lavrentovich OD (2001) Three-dimensional imaging of orientational order by fluorescence confocal polarizing microscopy. Chem Phys Lett 336:88–96

    Article  Google Scholar 

  • Shojaei-Zadeh S, Anna SL (2006) Role of surface anchoring and geometric confinement on focal conic textures in smectic-a liquid crystals. Langmuir 22:9986–9993

    Article  Google Scholar 

  • Song H, Chen DL, Ismagilov RF (2006) Reactions in droplets in microfluidic channels. Angew Chem Int Ed 45:7336–7356

    Article  Google Scholar 

  • Sonin AA (1995) The surface physics of liquid crystals. Gordon and Breach, Amsterdam

  • Stark H, Ventzki D (2001) Stokes drag of spherical particles in a nematic environment at low ericksen numbers. Phys Rev E 64:031711(9)

    Google Scholar 

  • Tajalli H, Gilani AG, Zakerhamidi MS, Tajalli P (2008) The photophysical properties of nile red and nile blue in ordered anisotropic media. Dyes Pigments 78:15–24

    Article  Google Scholar 

  • Toth G, Denniston C, Yeomans JM (2002) Hydrodynamics of topological defects in nematic liquid crystals. Phys Rev Lett 88:105504(4)

    Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  Google Scholar 

  • Yaroshchuk O, Reznikov Y (2012) Photoalignment of liquid crystals: basics and current trends. J Mater Chem 22:286–300

    Article  Google Scholar 

  • Yokoyama H (1988) Surface anchoring of nematic liquid crystals. Mol Cryst Liq Cryst 165:265–316

    Google Scholar 

  • Yoon DK, Choi MC, Kim YH, Kim MW, Lavrentovich OD, Jung HT (2007) Internal structure visualization and lithographic use of periodic toroidal holes in liquid crystals. Nature Mater 6:866–870

    Article  Google Scholar 

  • Zakharov AV, Dong RY (2002) Two shear flow regimes in nematic liquid crystals: Near a charged surface and in the bulk. J Chem Phys 116:6348

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the European Union (EC Marie Curie ITN project Hierarchy—PITN-CA-2008-215851). Helpful discussions with Stephan Herminghaus, Eric Stellamanns and Luciano De Sio are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupam Sengupta.

Electronic supplementary material

Electronic supplementary information (ESI) available: Flow-stabilized disclination lines observed between crossed polarizers. On increasing the flow velocity, the defect array breaks down and enters the chaotic regime. On reducing the flow velocity the defect array can be reversibly obtained (ESI1).

ESM1 (MPEG 4762 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sengupta, A., Schulz, B., Ouskova, E. et al. Functionalization of microfluidic devices for investigation of liquid crystal flows. Microfluid Nanofluid 13, 941–955 (2012). https://doi.org/10.1007/s10404-012-1014-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-012-1014-7

Keywords

Navigation