Skip to main content
Log in

Left atrial strain imaging differentiates cardiac amyloidosis and hypertensive heart disease

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Echocardiographic diagnosis of cardiac amyloidosis (CA) can be difficult to differentiate from increased left ventricular (LV) wall thickness from hypertensive heart disease. The aim of this study was to evaluate left atrial (LA) function and deformation using strain and strain rate (SR) imaging in cardiac amyloidosis. We reviewed 44 cases of CA confirmed by tissue biopsy or a combination of clinical and cardiac imaging data. Cases were classified according two subgroups: amyloid light chain (AL) or amyloid transthyretin (ATTR). These subjects underwent 2D-Speckle tracking echocardiographic derived (STE) LA strain analysis. These were compared to 25 hypertensive (HT) patients with increased LV wall thickness. The three phases of LA function were evaluated using strain and strain rate parameters. Despite a similar increase in LV wall thickness, all LA strain parameters were significantly reduced in the AL cohort compared to the HT cohort (reservoir strain/LAs: 11.0 vs. 24.8%, p < 0.05). The ATTR cohort had significantly thicker LV walls and higher atrial fibrillation burden compared to AL and HT patients but similar reduction in LA strain values compared to AL group. A reservoir strain (S-LAs) cut off value of 20% was 86.4% sensitive and 88.6% specific for detecting CA compared to HT heart disease in this cohort. LA strain parameters were able to identify LA dysfunction in all types of CA. LA function in CA is significantly worse compared with hypertensive patients despite similar increase in LV wall thickness. In combination with other clinical and imaging features, LA strain may provide incremental value in differentiating cardiac amyloidosis from increased wall thickness secondary to hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nochioka K, Quarta CC, Claggett B, Roca GQ, Rapezzi C, Falk RH, Solomon SD (2017) Left atrial structure and function in cardiac amyloidosis. Eur Heart J Cardiovasc Imaging 18(10):1128–1137

    PubMed  Google Scholar 

  2. Falk RH, Dubrey SW (2010) Amyloid heart disease. Prog Cardiovasc Dis 52(4):347–361

    Article  Google Scholar 

  3. Mohty D, Damy T, Cosnay P, Echahidi N, Casset-Senon D, Virot P, Jaccard A (2013) Cardiac amyloidosis: updates in diagnosis and management. Arch Cardiovasc Dis 106(10):528–540

    Article  Google Scholar 

  4. Gillmore JD, Maurer MS, Falk RH, Merlini G, Damy T, Dispenzieri A, Wechalekar AD, Berk JL et al (2016) Nonbiopsy diagnosis of cardiac transthyretin amyloidosis. Circulation 133(24):2404–2412

    Article  CAS  Google Scholar 

  5. Shukla A, Wong D, Humphries JA, Fitzgerald BT, Newbigin K, Bashford J, Scalia GM (2017) Transthyretin cardiac amyloidosis: a noninvasive multimodality approach to diagnosis using transthoracic echocardiography, 99m-Tc-labeled phosphate bone scanning, and cardiac magnetic resonance imaging. CASE (Philadelphia, PA) 1(2):49–53

    Google Scholar 

  6. Lee SP, Park JB, Kim HK, Kim YJ, Grogan M, Sohn DW (2019) Contemporary imaging diagnosis of cardiac amyloidosis. J Cardiovasc Imaging 27(1):1–10

    Article  Google Scholar 

  7. Fitzgerald BT, Bashford J, Newbigin K, Scalia GM (2017) Regression of cardiac amyloidosis following stem cell transplantation: a comparison between echocardiography and cardiac magnetic resonance imaging in long-term survivors. Int J Cardiol Heart Vasculature 14:53–57

    Article  Google Scholar 

  8. Alexander KM, Evangelisti A, Witteles RM (2019) Emerging therapies for transthyretin cardiac amyloidosis. Curr Treat Options Cardiovasc Med 21(8):40

    Article  Google Scholar 

  9. Maurer MS, Schwartz JH, Gundapaneni B, Elliott PM, Merlini G, Waddington-Cruz M, Kristen AV, Grogan M et al (2018) Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N Engl J Med 379(11):1007–1016

    Article  CAS  Google Scholar 

  10. Scalia GM, Scalia IG, Kierle R, Beaumont R, Cross DB, Feenstra J, Burstow DJ, Fitzgerald BT et al (2016) ePLAR - The echocardiographic pulmonary to left atrial ratio - A novel non-invasive parameter to differentiate pre-capillary and post-capillary pulmonary hypertension. Int J Cardiol 212:379–386

    Article  Google Scholar 

  11. Rausch K, Shiino K, Putrino A, Lam AK, Scalia GM, Chan J (2019) Reproducibility of global left atrial strain and strain rate between novice and expert using multi-vendor analysis software. Int J Cardiovasc Imaging 35(3):419–426

    Article  Google Scholar 

  12. Rausch K, Shiino K, Putrino A, Lam AK, Scalia GM, Chan J (2018) Reproducibility of global left atrial strain and strain rate between novice and expert using multi-vendor analysis software. Int J Cardiovasc Imaging 35:419

    Article  Google Scholar 

  13. Mohty D, Petitalot V, Magne J, Fadel BM, Boulogne C, Rouabhia D, ElHamel C, Lavergne D et al (2018) Left atrial function in patients with light chain amyloidosis: a transthoracic 3D speckle tracking imaging study. J Cardiol 71(4):419–427

    Article  Google Scholar 

  14. de Gregorio C, Dattilo G, Casale M, Terrizzi A, Donato R, Di Bella G (2016) Left atrial morphology, size and function in patients with transthyretin cardiac amyloidosis and primary hypertrophic cardiomyopathy- comparative strain imaging study. Circul J 80(8):1830–1837

    Article  Google Scholar 

  15. Singh A, Addetia K, Maffessanti F, Mor-Avi V, Lang RM (2017) LA Strain for categorization of LV diastolic dysfunction. JACC Cardiovasc Imaging 10(7):735–743

    Article  Google Scholar 

  16. Buss SJ, Emami M, Mereles D, Korosoglou G, Kristen AV, Voss A, Schellberg D, Zugck C et al (2012) Longitudinal left ventricular function for prediction of survival in systemic light-chain amyloidosis: incremental value compared with clinical and biochemical markers. J Am Coll Cardiol 60(12):1067–1076

    Article  Google Scholar 

  17. Koyama J, Falk RH (2010) Prognostic significance of strain Doppler imaging in light-chain amyloidosis. JACC Cardiovasc Imaging 3(4):333–342

    Article  Google Scholar 

  18. Fitzgerald BT, Bashford J, Scalia GM (2017) Regression of the anatomic cardiac features of amyloid light chain cardiac amyloidosis accompanied by normalization of global longitudinal strain. CASE (Philadelphia, PA) 1(2):46–48

    Google Scholar 

  19. Mohty D, Pibarot P, Dumesnil JG, Darodes N, Lavergne D, Echahidi N, Virot P, Bordessoule D et al (2011) Left atrial size is an independent predictor of overall survival in patients with primary systemic amyloidosis. Arch Cardiovasc Dis 104(12):611–618

    Article  Google Scholar 

  20. Tuzovic M, Kobayashi Y, Wheeler M, Barrett C, Liedtke M, Lafayette R, Schrier S, Haddad F et al (2017) Functional cardiac recovery and hematologic response to chemotherapy in patients with light-chain amyloidosis (from the Stanford University Amyloidosis Registry). Am J Cardiol 120(8):1381–1386

    Article  Google Scholar 

  21. Sanchis K, Cariou E, Colombat M, Ribes D, Huart A, Cintas P, Fournier P, Rollin A et al (2019) Atrial fibrillation and subtype of atrial fibrillation in cardiac amyloidosis: clinical and echocardiographic features, impact on mortality. Amyloid 26(3):128–138

    Article  Google Scholar 

  22. Inaba Y, Yuda S, Kobayashi N, Hashimoto A, Uno K, Nakata T, Tsuchihashi K, Miura T et al (2005) Strain rate imaging for noninvasive functional quantification of the left atrium: comparative studies in controls and patients with atrial fibrillation. J Am Soc Echocardiogr 18(7):729–736

    Article  Google Scholar 

  23. Sugimoto T, Robinet S, Dulgheru R, Bernard A, Ilardi F, Contu L, Addetia K, Caballero L et al (2018) Echocardiographic reference ranges for normal left atrial function parameters: results from the EACVI NORRE study. Eur Heart J Cardiovasc Imaging 19(6):630–638

    Article  Google Scholar 

  24. Pathan F, D'Elia N, Nolan MT, Marwick TH, Negishi K (2017) Normal ranges of left atrial strain by speckle-tracking echocardiography: a systematic review and meta-analysis. J Am Soc Echocardiogr 30(1):59–70.e8

    Article  Google Scholar 

  25. Liao JN, Chao TF, Kuo JY, Sung KT, Tsai JP, Lo CI, Lai YH, Su CH et al (2017) Age, sex, and blood pressure-related influences on reference values of left atrial deformation and mechanics from a large-scale Asian population. Circ Cardiovasc Imaging 10(10):e006077

    Article  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

KR—concept and design, data collection, primary author of manuscript. GMS—concept and design, critical revision of article. KS—interobserver variability data collection. NE—data collection, critical revision of article. AL—concept and design, drafting article, critical revision of article. DGP—concept and design, critical revision of article. JC—concept and design, oversight of data collection, statistical analysis, drafting article, critical revision of article.

Corresponding author

Correspondence to Jonathan Chan.

Ethics declarations

Conflict of interest

All the authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Data including study vendor, year of study and strain values for the amyloid and hypertensive cohorts

Disease state

Vendor

Year of study

Reservoir strain (S-LAs

Conduit strain (S-LAe)

Contractile strain (S-LAa)

AL

GE

2017

11.87

  

AL

Phillips

2018

7.94

4.895

3.045

AL

Phillips

2016

8.77

5.85

2.92

AL

Phillips

2010

22.955

7.75

15.205

AL

Phillips

2015

6.795

3.11

3.685

AL

Phillips

2015

9.09

4.87

4.22

AL

Phillips

2011

7.44

4.455

2.985

AL

GE

2017

2.245

1.385

0.86

AL

Phillips

2017

27.655

16.285

11.37

AL

GE

2015

12.64

4.805

7.835

AL

GE

2017

3.65

  

ATTR

GE

2015

12.64

4.805

7.835

ATTR

GE

2017

3.65

  

ATTR

GE

2018

6.245

3.995

2.25

ATTR

Phillips

2016

3.27

2.73

0.535

ATTR

GE

2016

5.46

3.58

1.88

ATTR

GE

2017

10.21

  

ATTR

Phillips

2019

5.00

  

ATTR

GE

2018

4.13

  

ATTR

GE

2017

5.57

  

ATTR

GE

2017

15.84

5.40

10.45

ATTR

GE

2017

15.87

6.53

9.34

ATTR

GE

2018

6.10

  

ATTR

Phillips

2014

19.51

  

ATTR

Phillips

2018

10.78

8.18

2.60

ATTR

GE

2017

6.60

  

ATTR

Phillips

2018

7.71

  

ATTR

Phillips

2017

3.73

  

ATTR

GE

2019

6.22

  

ATTR

Phillips

2015

10.08

  

ATTR

Phillips

2015

25.70

15.47

10.24

ATTR

GE

2015

9.95

3.41

6.54

ATTR

GE

2016

5.70

4.63

1.07

ATTR

GE

2015

7.30

  

ATTR

GE

2014

5.21

  

ATTR

GE

2015

6.10

  

ATTR

GE

2017

4.82

  

ATTR

GE

2013

7.34

  

ATTR

Phillips

2010

20.71

6.92

13.79

ATTR

HP7500

2004

2.49

  

ATTR

Phillips

2017

6.30

4.61

1.69

ATTR

Phillips

2018

28.70

4.94

15.77

ATTR

Phillips

2016

9.18

  

ATTR

Siemens

2016

2.37

  

ATTR

Phillips

2017

8.34

5.48

2.86

ATTR

GE

2015

32.64

15.91

13.65

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rausch, K., Scalia, G.M., Sato, K. et al. Left atrial strain imaging differentiates cardiac amyloidosis and hypertensive heart disease. Int J Cardiovasc Imaging 37, 81–90 (2021). https://doi.org/10.1007/s10554-020-01948-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-020-01948-9

Keywords

Navigation