Skip to main content

Advertisement

Log in

Impact of intensive fish farming on methane emission in a tropical hydropower reservoir

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Fisheries and aquaculture are important sources of food for hundreds of millions of people around the world. World fish production is projected to increase by 15% in the next 10 years, reaching around 200 million tonnes per year. The main driver of this increase will be based on fish farming management in developing countries. In Brazil, fish farming is increasing due to the climate conditions and large supply of water resources, with the production system based on Nile tilapia (Oreochromis niloticus) farming in reservoirs. Inland waters like reservoirs are a natural source of methane (CH4) to the atmosphere. However, knowledge of the impact from intensive fish production in net cages on CH4 fluxes is not well known. This paper presents in situ measurements of CH4 fluxes and dissolved CH4 (DM) in the Furnas Hydroelectric Reservoir in order to evaluate the impact of fish farming on methane emissions. Measurements were taken in a control area without fish production and three areas with fish farming. The overall mean of diffusive methane flux (DMF) (5.9 ± 4.5 mg CH4 m−2 day−1) was significantly lower when compared to the overall mean of bubble methane flux (BMF) (552.9 ± 1003.9 mg CH4 m−2 day−1). The DMF and DM were significantly higher in the two areas with fish farming, whereas the BMF was not significantly different. The DMF and DM were correlated to depth and chlorophyll-a. However, the low production of BMF did not allow the comparison with the limnological parameters measured. This case study shows that CH4 emissions are influenced more by reservoir characteristics than fish production. Further investigation is necessary to assess the impact of fish farming on the greenhouse gas emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abril G, Richard S, Guérin F (2006) In situ measurements of dissolved gases (CO2 and CH4) in a wide range of concentrations in a tropical reservoir using an equilibrator. Sci Total Environ 354:246–251. https://doi.org/10.1016/j.scitotenv.2004.12.051

    Article  Google Scholar 

  • Agostinho AA, Pelicice FM, Gomes LC (2008) Dams and the fish fauna of the Neotropical region: impacts and management related to diversity and fisheries. Brazilian J Biol 68:1119–1132. https://doi.org/10.1590/S1519-69842008000500019

    Article  Google Scholar 

  • Araújo CAS, Sampaio FG, Alcântara E et al (2017) Effects of atmospheric cold fronts on stratification and water quality of a tropical reservoir: implications for aquaculture. Aquac Environ Interact 9:385–403. https://doi.org/10.3354/aei00240

    Article  Google Scholar 

  • Bartlett KB, Harriss RC (1993) Review and assessment of methane emissions from wetlands. Chemosphere 26:261–320

    Article  Google Scholar 

  • Bartlett KB, Crill PM, Sebacher DI, Harris RC, Wilson JO, Melack JM (1988) Methane flux from the central Amazonian floodplain. J Geophys Res 93:1571–1582. https://doi.org/10.1029/JD093iD02p01571

    Article  Google Scholar 

  • Bastviken D, Cole J, Pace M, Tranvik L (2004) Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and global estimate. Glob Biogeochem Cycles 18:1–12. https://doi.org/10.1029/2004GB002238

    Article  Google Scholar 

  • Belger I, Forsberg BR, Melack JM (2011) Carbon dioxide and methane emissions from interfluvial wetlands in the upper Negro River basin, Brazil. Biogeochemistry 105:171–183. https://doi.org/10.1007/s10533-010-9536-0

    Article  Google Scholar 

  • Beveridge MCM (2004) Cage aquaculture, Third edn. Blackwell Publishing Ltd, Oxford, UK 368 p

  • Bunting SW, Pretty J (2007) Aquaculture development and global carbon budgets: emissions, sequestration and management options. Centre for Environment and Society Occasional Paper 2007-1. University of Essex, UK. 39 pp.

  • Chen Y, Dong SL, Wang ZN, Wang F, Gao QF, Tian XL, Xiong YH (2015) Variations in CO2 fluxes from grass carp Ctenopharyngodon idella aquaculture polyculture ponds. Aquacult Environ Interact 8:31–40

    Article  Google Scholar 

  • Chen Y, Dong SL, Wang F, Gao QF, Tian XL (2016) Carbon dioxide and methane fluxes from feeding and no-feeding mariculture ponds. Environ Pollut 212:489–497. https://doi.org/10.1016/j.envpol.2016.02.039

    Article  Google Scholar 

  • Cicerone RJ, Shetter JD (1981) Sources of atmospheric methane: measurements in rice paddies and a discussion. J Geophys Res 86:7203–7209. https://doi.org/10.1029/JC086iC08p07203

    Article  Google Scholar 

  • Cochrane K, De Young C, Soto D, Bahri T (eds) (2009) Climate change implications for fisheries and aquaculture: overview of current scientific knowledge. FAO Fisheries and Aquaculture Technical Paper. No. 530. Rome, FAO, 212 pp Available in: http://www.fao.org/docrep/012/i0994e/i0994e00.htm

  • Coelho CAS, Oliveira CP, Ambrizzi T, Reboita MS, Carpenedo CB, Campos JLPS, Tomaziello ACN, Pampuch LA, Custódio MS, Dutra LMM, Da Rocha RP, Rehbein A (2016) The 2014 southeast Brazil austral summer drought: regional scale mechanisms and teleconnections. Clim Dyn 46:3737–3752. https://doi.org/10.1007/s00382-015-2800-1

    Article  Google Scholar 

  • Conrad R (1999) Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiol Ecol 28:193–202. https://doi.org/10.1111/j.1574-6941.1999.tb00575.x

    Article  Google Scholar 

  • Crump BC, Fine LM, Fortunato CS et al (2017) Quantity and quality of particulate organic matter controls bacterial production in the Columbia River estuary. Limnol Oceanogr 62:2713–2731. https://doi.org/10.1002/lno.10601

    Article  Google Scholar 

  • Dalal RC, Allen DE (2008) Greenhouse gas fluxes from natural ecosystems. Aust J Bot 56:369–407. https://doi.org/10.5194/bg-13-4789-2016

    Article  Google Scholar 

  • Deemer BR, Harrison JA, Li S, Beaulieu JJ, Delsontro T, Barros N, Bezerra-Neto JF, Powers SM, Dos Santos MA, Vonk JA (2016) Greenhouse gas emissions from reservoir water surfaces: a new global synthesis. BioScience 66:949–964. https://doi.org/10.1093/biosci/biw117

    Article  Google Scholar 

  • Devol AH, Richey JE, Clark WA, King SL, Martinelli LA (1988) Methane emissions to the troposphere from the Amazon floodplain. J Geophys Res 93:1583–1592

    Article  Google Scholar 

  • Furnas (2014) Projeto Furnas: desenvolvimento de sistema de monitoramento para gestão ambiental da Aquicultura no reservatório de Furnas: suporte para a consolidação de indicadores para o plano de monitoramento e gestão ambiental da aquicultura: relatório II: atividades 2013. – Jaguariúna: Embrapa Meio Ambiente; Brasília, DF: Ministério da Pesca e da Aquicultura, 221 pp.

  • Honkanen T, Helminen H (2000) Impacts of fish farming on eutrophication: comparisons among different characteristics of ecosystem. Int Rev Hydrobiol 85:673–686. https://doi.org/10.1002/1522-2632(200011)85:5/6<673::AID-IROH673>3.0.CO;2-O

    Article  Google Scholar 

  • Hou J, Zhang G, Sun M, Ye W, Song D (2016) Methane distribution, sources, and sinks in an aquaculture bay (Saggou Bay, China). Aquacult Environ Interact 8:481–495. https://doi.org/10.3354/aei00189

    Article  Google Scholar 

  • Hu Z, Lee JW, Chandran K, Kim S, Sharma K, Khanal SK (2014) Influence of carbohydrate addition on nitrogen transformations and greenhouse gas emissions of intensive aquaculture system. Sci Total Environ 470:193–200

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2014) Climate change 2014: mitigation of climate change: synthesis report. Contribution of working groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland

  • Ioffe BV, Vitenberg AG, Manatov IA (1984) Head-space analysis and related methods in a gas chromatography. John Wiley & Sons Inc., United States 304 pp

    Google Scholar 

  • Keller M, Stallard RF (1994) Methane emission by bubbling from Gatum Lake, Panama. J Geophys Res 99:8307–8319

    Article  Google Scholar 

  • Khalil MAK, Rasmussen RA, Shearer M, Dalluge R, Ren L, Duan CL (1998) Factors affecting methane emissions from rice fields. J Geophys Res 103:25219–25231. https://doi.org/10.1029/98JD01115

    Article  Google Scholar 

  • Lehner B, Liermann CR, Revenga C, Vörösmarty C, Fekete B, Crouzet P, Döll P, Endejan M, Frenken K, Magone J, Nilsson C, Robertson JC, Rödel R, Sindorf N, Wisser D (2011) High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front Ecol Environ 9:454–502. https://doi.org/10.1890/100125

    Article  Google Scholar 

  • Liss PS (1973) Processes of gas exchange across an air-water interface. Deep-Sea Res 20:221–238. https://doi.org/10.1016/0011-7471(73)90013-2

    Article  Google Scholar 

  • Liu S, Hu Z, Wu S et al (2016) Methane and nitrous oxide emissions reduced following conversion of rice paddies to inland crab-fish aquaculture in Southeast China. Environ Sci Technol 50:633–642. https://doi.org/10.1021/acs.est.5b04343

    Article  Google Scholar 

  • Marani L, Alvalá PC (2007) Methane emissions from lakes and floodplains in Pantanal, Brazil. Atmos Environ 41:1627–1633. https://doi.org/10.1016/j.atmosenv.2006.10.046

    Article  Google Scholar 

  • Marmulla G (2001) Dams, fish and fisheries: opportunities, challenges and conflict resolution. FAO Fish Aquac Tech Pap No 419:1–166

    Google Scholar 

  • National Oceanic and Atmospheric (NOAA) (2016) The NOAA annual greenhouse gas index (AGGI). Spring. Available in: http://www.esrl.noaa.gov/gmd/aggi/aggi.html

  • OECD/FAO (2016), OECD-FAO agricultural outlook 2016–2025, OECD Publishing, Paris. Available in: https://doi.org/10.1787/agr_outlook-2016-en

  • Operador Nacional do Sistema Elétrico (ONS) (2016) Volume útil dos principais reservatórios. Brasília. Available in: http://www.ons.org.br/historico/percentual_volume_util.aspx

  • Ramos IP, Brandão H, Zanatta AS et al (2013) Interference of cage fish farm on diet, condition factor and numeric abundance on wild fish in a Neotropical reservoir. Aquaculture 414–415:56–62. https://doi.org/10.1016/j.aquaculture.2013.07.013

    Article  Google Scholar 

  • Repeta DJ, Ferrón S, Sosa OA et al (2016) Marine methane paradox explained by bacterial degradation of dissolved organic matter. Nat Geosci 9:884–887. https://doi.org/10.1038/ngeo2837

    Article  Google Scholar 

  • Roslev P, King GM (1996) Regulation of methane oxidation in a freshwater wetland by water table changes and anoxia. FEMS Microbiol Ecol 19:105–115. https://doi.org/10.1111/j.1574-6941.1996.tb00203.x

    Article  Google Scholar 

  • Sá Junior WP (1994) Production of planktonic biomass for feed of Alevins at the Furnas Hydrobiology and Hatchery Station. In: Pinto-COELHO RM, GIANI A, VON SPERLING E (eds) Ecology and human impact on lakes and reservoirs in Minas Gerais with special reference to future development and management strategies. Belo Horizonte, SEGRAC, pp 133–139

    Google Scholar 

  • Sass RL, Fisher FM, Wang YB et al (1992) Methane emission from rice fields: the effect of floodwater management. Glob Biogeochem Cycles 6:249–262. https://doi.org/10.1029/92GB01674

    Article  Google Scholar 

  • Sawakuchi HO, Bastviken D, Sawakuchi AO et al (2016) Oxidative mitigation of aquatic methane emissions in large Amazonian rivers. Glob Chang Biol 22:1075–1085. https://doi.org/10.1111/gcb.13169

    Article  Google Scholar 

  • Schiller CL, Hastie DR (1994) Exchange of nitrous-oxide within the Hudson-Bay lowland. J Geophys Res 99:1573–1588

    Article  Google Scholar 

  • Selvam BP, Natchimuthu S, Arunachalam L, Bastviken D (2014) Methane and carbon dioxide emissions from inland waters in India—implications for large scale greenhouse gas balances. Global Change Biollogy 20:3397–3407. https://doi.org/10.1111/gcb.12575

    Article  Google Scholar 

  • Stech JL, Silva CM, Assireu AT et al (2006) Telemetric monitoring system for meteorological and limnological data acquisition. Verhandlungen des Int Verein Limnol 29:1–4. https://doi.org/10.1080/03680770.2006.11902987

    Article  Google Scholar 

  • Svensson B (2005) Greenhouse gas emissions from hydroelectric reservoirs: a global perspective. pp.25–27, In: Santos MA, Rosa LP (eds) Global warming and hydroelectric reservoirs. Proceedings of International Seminar on Greenhouse Fluxes from Hydro Reservoirs & Workshop on Modeling Greenhouse Gas Emissions from Reservoir at Watershed Level. Rio de Janeiro, Brasil, 8–12 Agosto, 2005. COPPE/UFRj, Eletrobrás 2005.197 pp.

  • Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Microbiology 6:579–591. https://doi.org/10.1038/nrmicro1931

    Article  Google Scholar 

  • Wang ZP, Delaune RD, Masscheleyn PH, Patrick WH (1993) Soil redox and pH effects on methane production in a flooded rice. Soil Sci Soc Am J 57:382–385. https://doi.org/10.2136/sssaj1993.03615995005700020016x

    Article  Google Scholar 

  • Wanninkhof R (1992) Relationship between wind speed and gas exchange over the ocean. J Geophys Res 97:7373–7382. https://doi.org/10.4319/lom.2014.12.351

    Article  Google Scholar 

  • Wuebbles DJ, Hayhoe K (2002) Atmospheric methane and global change. Earth Sci Rev 57:177–210. https://doi.org/10.1016/S0012-8252(01)00062-9

    Article  Google Scholar 

  • Yang SS, Chang HL (1998) Effect of environmental conditions on methane production and emission from paddy soil. Agriculture Ecosystems & Environment, Amsterdam 69:69–80. https://doi.org/10.1016/S0167-8809(98)00098-X

    Article  Google Scholar 

  • Yang L, Lu F, Zhou X, Wang X, Duan X, Sun B (2014) Progress in the studies on the greenhouse gas emissions from reservoirs. Acta Ecol Sin 34:204–212

    Article  Google Scholar 

  • Yang P, He QH, Huang JF, Tong C (2015) Fluxes of greenhouse gases at two different aquaculture ponds in the coastal zone of southeastern China. Atmos Environ 115:269–277

    Article  Google Scholar 

  • Yang P, Bastviken D, Jin BS, Mou XJ, Tong C (2017) Effects of coastal marsh conversion to shrimp aquaculture ponds on CH4 and N2O emissions. Estuar Coast Shelf S 199:125–131

    Article  Google Scholar 

  • Yang P, Zhang Y, Lai DYF, Tan L, Jin B, Tong C (2018) Fluxes of carbon dioxide and methane across the water-atmosphere interface of aquaculture shrimp ponds in two subtropical estuaries: the effect of temperature, substrate, salinity and nitrate. Sci Total Environ 635:1025–1035

    Article  Google Scholar 

  • Zhao Y, Wu BF, Zeng Y (2013) Spatial and temporal patterns of greenhouse gas emissions from Three Gorges Reservoir of China earth system. Biogeosciences 10:1219–1230. https://doi.org/10.5194/bg-10-1219-2013

    Article  Google Scholar 

  • Zhu L, Che X, Liu H et al (2016) Greenhouse gas emissions and comprehensive greenhouse effect potential of Megalobrama amblycephala culture pond ecosystems in a 3-month growing season. Aquac Int 24:893–902. https://doi.org/10.1007/s10499-015-9959-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Paula Packer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, M.G., Packer, A.P., Sampaio, F.G. et al. Impact of intensive fish farming on methane emission in a tropical hydropower reservoir. Climatic Change 150, 195–210 (2018). https://doi.org/10.1007/s10584-018-2281-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-018-2281-4

Navigation