Skip to main content

Advertisement

Log in

Deep learning for lithological classification of carbonate rock micro-CT images

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

In addition to the ongoing development, pre-salt carbonate reservoir characterization remains a challenge, primarily due to inherent geological particularities. These challenges stimulate the use of well-established technologies, such as artificial intelligence algorithms, for image classification tasks. Therefore, this work intends to present an application of deep learning techniques to identify lithological patterns in Brazilian pre-salt carbonate rocks using microtomographic images. Four convolutional neural network models were proposed. The first model includes three convolutional layers, followed by a fully connected layer. This model is used as a base model for the following proposals. In the next two models, we replace the max pooling layer with a spatial pyramid pooling and a global average pooling layer. The last model uses a combination of spatial pyramid pooling followed by global average pooling in place of the final pooling layer. All models are compared using original images, when possible, as well as resized images. The dataset consists of 6,000 images from three different classes. The model performances were evaluated by each image individually, as well as by the most frequently predicted class for each sample. According to accuracy, Model 2 trained on resized images achieved the best results, reaching an average of 75.54% for the first evaluation approach and an average of 81.33% for the second. We developed a workflow to automate and accelerate the lithology classification of Brazilian pre-salt carbonate samples by categorizing microtomographic images using deep learning algorithms in a non-destructive way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and material

All data belong to Petrobras.

Code Availability

The code belong to Petrobras.

References

  1. Ahr, W.M.: Geology of Carbonate Reservoirs: The Identification, Description, and Characterization of Hydrocarbon Reservoirs in Carbonate Rocks. Wiley. https://doi.org/10.1002/9780470370650 (2008)

  2. Al-Mudhafar, W.J.: Integrating well log interpretations for lithofacies classification and permeability modeling through advanced machine learning algorithms. J. Petrol. Explor. Prod. Technol. 7(4), 1023–1033 (2017). https://doi.org/10.1007/s13202-017-0360-0

    Article  Google Scholar 

  3. Alqahtani, N., Alzubaidi, F., Armstrong, R.T., Swietojanski, P., Mostaghimi, P.: Machine learning for predicting properties of porous media from 2d x-ray images. Journal of Petroleum Science and Engineering. https://doi.org/10.1016/j.petrol.2019.106514 (2019)

  4. Amiri, M., Ghiasi-Freez, J., Golkar, B., Hatampour, A.: Improving water saturation estimation in a tight shaly sandstone reservoir using artificial neural network optimized by imperialist competitive algorithm–a case study. J. Pet. Sci. Eng. 127, 347–358 (2015). https://doi.org/10.1016/j.petrol.2015.01.013

    Article  Google Scholar 

  5. Arns, C.H., Bauget, F., Limaye, A., Sakellariou, A., Senden, T., Sheppard, A., Sok, R.M., Pinczewski, V., Bakke, S., Berge, L.I., Øren, P.E., Knackstedt, M.A.: Pore scale characterization of carbonates using x-ray microtomography. Spe J. 10(04), 475–484 (2005). https://doi.org/10.2118/90368-PA

    Article  Google Scholar 

  6. Arns, C.H., Knackstedt, M.A., Pinczewski, W.V., Garboczi, E.J.: Computation of linear elastic properties from microtomographic images: Methodology and agreement between theory and experiment. Geophysics 67(5), 1396–1405 (2002). https://doi.org/10.1190/1.1512785

    Article  Google Scholar 

  7. Bordignon, F., de Figueiredo, L.P., Exterkoetter, R., Rodrigues, B.B., Correia, M.D.: Deep learning for grain size distribution estimation in micro ct. In: 81st EAGE Conference and Exhibition 2019, p. 4 (2019)

  8. Buryakovsky, L., Chilingar, G.V., Shin, S., Rieke, H.H.: Fundamentals of the Petrophysics of Oil and Gas Reservoirs. Wiley. https://doi.org/10.1002/9781118472750 (2012)

  9. Chai, H., Li, N., Xiao, C., Liu, X., Li, D., Wang, C., Wu, D.: Automatic discrimination of sedimentary facies and lithologies in reef-bank reservoirs using borehole image logs. Appl. Geophys. 6 (1), 17–29 (2009). https://doi.org/10.1007/s11770-009-0011-4

    Article  Google Scholar 

  10. Cheng, g., Guo, W.: Rock images classification by using deep convolution neural network. J. Phys.: Conf. Series 887, 012089 (2017). https://doi.org/10.1088/1742-6596/887/1/012089

    Article  Google Scholar 

  11. Claes, S., Soete, J., Cnudde, V., Swennen, R.: A three-dimensional classification for mathematical pore shape description in complex carbonate reservoir rocks. Math. Geosci. 48(6), 619–639 (2016). https://doi.org/10.1007/s11004-016-9636-z

    Article  Google Scholar 

  12. Cnudde, V., Boone, M.N.: High-resolution x-ray computed tomography in geosciences: A review of the current technology and applications. Earth Sci. Rev. 123, 1–17 (2013). https://doi.org/10.1016/j.earscirev.2013.04.003

    Article  Google Scholar 

  13. Dvorkin, J., Derzhi, N., Fang, Q., Nur, A., Nur, B., Grader, A., Baldwin, C., Tono, H., Diaz, E.: From micro to reservoir scale: Permeability from digital experiments. Lead. Edge 28(12), 1446–1452 (2009). https://doi.org/10.1190/1.3272699

    Article  Google Scholar 

  14. Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning. Springer series in statistics. New York (2001)

  15. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016) http://www.deeplearningbook.org

  16. Hanna, R.D., Ketcham, R.A.: X-ray computed tomography of planetary materials: A primer and review of recent studies. Chem. Erde-Geochem. 77(4), 547–572 (2017). https://doi.org/10.1016/j.chemer.2017.01.006

    Article  Google Scholar 

  17. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015). https://doi.org/10.1109/TPAMI.2015.2389824

    Article  Google Scholar 

  18. Honarpour, M.M., Cromwell, V., Hatton, D., Satchwell, R.: Reservoir rock descriptions using computed tomography (ct). In: 60th Annual Technical Conference and Exhibition. https://doi.org/10.2118/14272-MS (1985)

  19. Hosny, A., Parmar, C., Coroller, T.P., Grossmann, P., Zeleznik, R., Kumar, A., Bussink, J., Gillies, R.J., Mak, R.H., Aerts, H.J.: Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study. PLoS Medi. 15(11), e1002711 (2018). https://doi.org/10.1371/journal.pmed.1002711

    Article  Google Scholar 

  20. Ja’fari, A., Kadkhodaie-Ilkhchi, A., Sharghi, Y., Ghanavati, K.: Fracture density estimation from petrophysical log data using the adaptive neuro-fuzzy inference system. J. Geophys. Eng. 9(1), 105–114 (2012). https://doi.org/10.1088/1742-2132/9/1/013

    Article  Google Scholar 

  21. Japkowicz, N., Shah, M.: Evaluating Learning Algorithms: A Classification Perspective. Cambridge University Press, New York (2014). https://doi.org/10.1017/CBO9780511921803

    Google Scholar 

  22. Karimpouli, S., Tahmasebi, P.: Image-based velocity estimation of rock using convolutional neural networks. Neural Netw. 111, 89–97 (2019). https://doi.org/10.1016/j.neunet.2018.12.006

    Article  Google Scholar 

  23. Karimpouli, S., Tahmasebi, P.: Segmentation of digital rock images using deep convolutional autoencoder networks. Comput. Geosci. 126, 142–150 (2019). https://doi.org/10.1016/j.cageo.2019.02.003

    Article  Google Scholar 

  24. Kenari, S.A.J., Mashohor, S.: Robust committee machine for water saturation prediction. J. Pet. Sci. Eng. 104, 1–10 (2013). https://doi.org/10.1016/j.petrol.2013.03.009

    Article  Google Scholar 

  25. Ketcham, R.A., Carlson, W.D.: Acquisition, optimization and interpretation of x-ray computed tomographic imagery: Applications to the geosciences. Comput. Geosci. 27(4), 381–400 (2001). https://doi.org/10.1016/S0098-3004(00)00116-3

    Article  Google Scholar 

  26. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv:https://arxiv.org/abs/1412.6980(2014)

  27. Knackstedt, M.A., Arns, C.H., Limaye, A., Sakellariou, A., Senden, T.J., Sheppard, A.P., Sok, R.M., Pinczewski, W.V., Bunn, G.F.: Digital core laboratory: Properties of reservoir core derived from 3d images. In: SPE Asia Pacific Conference on Integrated Modelling for Asset Management, p. 14. Society of Petroleum Engineers. https://doi.org/10.2118/87009-MS (2004)

  28. Knackstedt, M.A., Latham, S., Madadi, M., Sheppard, A., Varslot, T., Arns, C.: Digital rock physics: 3d imaging of core material and correlations to acoustic and flow properties. Lead. Edge 28 (1), 28–33 (2009). https://doi.org/10.1190/1.3064143

    Article  Google Scholar 

  29. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105. https://doi.org/10.1145/3065386 (2012)

  30. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 2, pp. 2169–2178. IEEE. https://doi.org/10.1109/CVPR.2006.68 (2006)

  31. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  32. LeCun, Y., et al.: Generalization and network design strategies. Connectionism Perspect. 19, 143–155 (1989)

    Google Scholar 

  33. Lee, H., Tajmir, S., Lee, J., Zissen, M., Yeshiwas, B.A., Alkasab, T.K., Choy, G., Do, S.: Fully automated deep learning system for bone age assessment. J. Digit. Imag. 30(4), 427–441 (2017). https://doi.org/10.1007/s10278-017-9955-8

    Article  Google Scholar 

  34. de Lima, R.P., Bonar, A., Coronado, D.D., Marfurt, K., Nicholson, C.: Deep convolutional neural networks as a geological image classification tool. Sedimen. Record 17(2), 4–9 (2019). https://doi.org/10.2110/sedred.2019.2.4

    Article  Google Scholar 

  35. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv:https://arxiv.org/abs/1312.4400 (2013)

  36. Maiti, S., Krishna Tiwari, R., Kümpel, H. J.: Neural network modelling and classification of lithofacies using well log data: A case study from ktb borehole site. Geophys. J. Int. 169(2), 733–746 (2007). https://doi.org/10.1111/j.1365-246X.2007.03342.x

    Article  Google Scholar 

  37. Marmo, R., Amodio, S., Tagliaferri, R., Ferreri, V., Longo, G.: Textural identification of carbonate rocks by image processing and neural network: Methodology proposal and examples. Comput. Deosci. 31(5), 649–659 (2005). https://doi.org/10.1016/j.cageo.2004.11.016

    Article  Google Scholar 

  38. Muljadi, B.P., Blunt, M.J., Raeini, A.Q., Bijeljic, B.: The impact of porous media heterogeneity on non-darcy flow behaviour from pore-scale simulation. Adv. Water Resour. 95, 329–340 (2016). https://doi.org/10.1016/j.advwatres.2015.05.019

    Article  Google Scholar 

  39. Odi, U., Nguyen, T.: Geological facies prediction using computed tomography in a machine learning and deep learning environment. In: Unconventional Resources Technology Conference, Houston, Texas pp. 336–346. https://doi.org/10.15530/urtec-2018-2901881 (2018)

  40. Pochet, A., Diniz, P.H., Lopes, H., Gattass, M.: Seismic fault detection using convolutional neural networks trained on synthetic poststacked amplitude maps. Geosci. Remote Sens. Lett. 16(3), 352–356 (2018). https://doi.org/10.1109/LGRS.2018.2875836

    Article  Google Scholar 

  41. Qi, L., Carr, T.R.: Neural network prediction of carbonate lithofacies from well logs, big bow and sand arroyo creek fields, southwest kansas. Comput. Geosci. 32(7), 947–964 (2006). https://doi.org/10.1016/j.cageo.2005.10.020

    Article  Google Scholar 

  42. Remeysen, K., Swennen, R.: Application of microfocus computed tomography in carbonate reservoir characterization: Possibilities and limitations. Mar. Pet. Geol. 25(6), 486–499 (2008). https://doi.org/10.1016/j.marpetgeo.2007.07.008

    Article  Google Scholar 

  43. Saggaf, M.M., Nebrija, E.L.: A fuzzy logic approach for the estimation of facies from wire-line logs. AAPG Bull. 87(7), 1223–1240 (2003). https://doi.org/10.1306/02260301019

    Article  Google Scholar 

  44. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014). http://jmlr.org/papers/v15/srivastava14a.html

    Google Scholar 

  45. Sudakov, O., Burnaev, E., Koroteev, D.: Driving digital rock towards machine learning: Predicting permeability with gradient boosting and deep neural networks. Comput. Geosci. 127, 91–98 (2019). https://doi.org/10.1016/j.cageo.2019.02.002

    Article  Google Scholar 

  46. Tschannen, V., Delescluse, M., Rodriguez, M., Keuper, J.: Facies classification from well logs using an inception convolutional network. arXiv:https://arxiv.org/abs/1706.00613v1 (2017)

  47. Valentín, M.B., Bom, C.R., Coelho, J.M., Correia, M.D., Márcio, P., Marcelo, P., Faria, E.L.: A deep residual convolutional neural network for automatic lithological facies identification in brazilian pre-salt oilfield wellbore image logs. J. Pet. Sci. Eng. 179, 474–503 (2019). https://doi.org/10.1016/j.petrol.2019.04.030

    Article  Google Scholar 

  48. Vinegar, H.J.: X-ray ct and nmr imaging of rocks. J. Petrol. Tech. 38, 257–259 (1986). https://doi.org/10.2118/15277-PA

    Article  Google Scholar 

  49. Waldeland, A.U., Solberg, A.H.S.S.: Salt classification using deep learning. In: EAGE Conference and Exhibition 2017. https://doi.org/10.3997/2214-4609.201700918 (2017)

  50. Wang, G., Carr, T.R.: Marcellus shale lithofacies prediction by multiclass neural network classification in the appalachian basin. Math. Geosci. 44(8), 975–1004 (2012). https://doi.org/10.1007/s11004-012-9421-6

    Article  Google Scholar 

  51. Wang, Y., Arns, C.H., Rahman, S.S., Arns, J.Y.: Porous structure reconstruction using convolutional neural networks. Math. Geosci. 50(7), 781–799 (2018). https://doi.org/10.1007/s11004-018-9743-0

    Article  Google Scholar 

  52. Wildenschild, D., Sheppard, A.P.: X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv. Water Resour. 51, 217–246 (2013). https://doi.org/10.1016/j.advwatres.2012.07.018

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Petrobras for providing the data and financial support and NVIDIA Corporation for the GPU provided by the NVIDIA Grant Program. The authors also thank the Brazilian Research Council (CNPq) for the scholarships for students and researchers.

Funding

This work was funded by Petrobras, which provided the data and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos E. M. dos Anjos.

Ethics declarations

Conflicts of interest/Competing interests

There are no conflicts of interest/competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Anjos, C.E.M., Avila, M.R.V., Vasconcelos, A.G.P. et al. Deep learning for lithological classification of carbonate rock micro-CT images. Comput Geosci 25, 971–983 (2021). https://doi.org/10.1007/s10596-021-10033-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-021-10033-6

Keywords

Navigation