Skip to main content

Advertisement

Log in

Is cell culture a suitable tool for the evaluation of micro- and nanoplastics ecotoxicity?

  • Mini-Review
  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Plastic particles have been described in aquatic ecosystems worldwide. An increasing number of studies have tried to evaluate the toxic impacts of microplastics (1–5000 µm) but also nanoplastics (<1 µm) in marine and freshwater organisms. However, the wide variety of plastic particles characteristics such as various sizes, shapes, functionalization or types of polymer, makes it difficult to evaluate their impact with regular ecotoxicity testing. In this context, cell culture, mainly used in human toxicology, could be a promising tool to evaluate micro- and nanoplastics toxicity with a wide diversity of conditions allowing to generate a large set of data. This review presents the current research on micro and nanoplastics using cell culture of marine and freshwater organisms, describes the limitations of cell culture tool and defines whether this tool can be considered as a relevant alternative strategy for ecotoxic evaluation of micro and nanoplastics especially for future regulatory needs. Articles using specifically cell culture tool from aquatic organisms such as fish or bivalves were identified. The majority evaluated the toxicity of polystyrene nanobeads on immune parameters, oxidative stress or DNA damage in fish cells. Although most of the papers characterized nanoplastic particles into the cell culture media, the relevance of testing conditions is not always clear. The development of cell culture can offer many opportunities for the evaluation of plastic particles’ cellular impacts, but more research is needed to develop relevant culture models, on various aquatic organisms, and with consideration of abiotic parameters especially composition of cell culture media for nanoplastic evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almeida M, Martins MA, Soares AMV, Cuesta A, Oliveira M (2019) Polystyrene nanoplastics alter the cytotoxicity of human pharmaceuticals on marine fish cell lines. Environ Tox Pharmacol 69:57–65

    Article  CAS  Google Scholar 

  • Barrick A, Châtel A, Bruneau M, Mouneyrac C (2017) The role of high-throughput screening in ecotoxicology and engineered nanomaterials. Environ Toxico Chem 36:1704–1714

    Article  CAS  Google Scholar 

  • Barrick A, Mouneyrac C, Manier N, De Lantivy L, Jrad N, Châtel A (2018) Towards the development of a high throughput screening approach for Mytilus edulis hemocytes: a case study on silicon-based nanomaterials. Mar Environ Res 142:306–318

    Article  CAS  Google Scholar 

  • Barrick A, Manier N, Lonchambon P, Flahaut E, Jrad N, Mouneyrac C, Châtel A (2019) Investiating a transcriptomic approach on marine mussel hemocytes exposed to carbon nanofibers: an in vitro/in vivo comparison. Aquat Toxicol 207:19–28

    Article  CAS  Google Scholar 

  • Besseling E, Foekem EM, Van Franeker JA, Leopold MF, Kühn S, Bravo Rebolledo EL, Heße E, Mielke L, IJzer J, Kamming P, Koelmans AA (2015) Microplastic in a macro filter feeder: Humpback whale Megaptera novaeangliae. Mar Pollut Bull 95:248–252

    Article  CAS  Google Scholar 

  • Botterell ZLR, Beaumont N, Dorrington T, Steinke M, Thompson RC, Lindeque PK (2019) Bioavailability and effects of microplastics on marine zooplankton: a review. Environ Poll 245:98–110

    Article  CAS  Google Scholar 

  • Brach L, Deixonne P, Bernard MF, Durand E, Desjean MC, Perez E, Van Sebille E, Ter Halle A (2018) Anticyclonic Eddies increase accumulation of microplastic in the North Atlantic Subtropical Gyre. Mar Pollut Bull 126:191–196

    Article  CAS  Google Scholar 

  • Brennecke D, Duarte B, Paiva F, Caçador I, Canning-Clode J (2016) Microplastics as vector for heavy metal contamination from the marine environment. Estuar Coast Shelf Sci 2016(178):189–195

    Article  Google Scholar 

  • Bussolaro D, Wright SL, Schnell S, Schirmer K, Bury NR, Volker MA (2019) Co-exposure to polystyrene plastic beads and polycyclic aromatic hydrocarbon contaminants in fish gill (RTgill-W1) and intestinal (RTgutGC) epithelial cells derived from rainbow trout (Oncorhynchus Mykiss). Environ Poll 248:706–714

    Article  CAS  Google Scholar 

  • Cai L, Hu L, Shi H, Ye J, Zhang Y, Kim H (2018) Effects of inorganic ions and natural organic matter on the aggregation of nanoplastics. Chemosphere 197:142–151

    Article  CAS  Google Scholar 

  • Casado MP, Macken A, Byrne HJ (2013) Ecotoxicological assessment of silica and polystyrene nanoparticles assessed by a multitrophic test battery. Environ Internat 51:97–105

    Article  CAS  Google Scholar 

  • Castañeda RA, Avlijas S, Simard MA, Ricciardi A (2014) Microplastic pollution in St Lawrence River Sediments. Journal Canadien des Sciences Halieutiques et Aquatiques 71(12):1767–1771

    Article  Google Scholar 

  • Castaño A, Cantarino MJ, Castillo P, Tarazona JV (1996) Correlation between the RTG cytotoxicity test EC50 and in vivo LC50 rainbow trout bioassay. Chemosphere 32:2141–2157

    Article  Google Scholar 

  • Châtel A, Lièvre C, Barrick A, Bruneau M, Mouneyrac C (2018) Transcriptomic approach: a promising tool for rapid screening nanomaterial-mediated toxicity in the marine Bivalve Mytilus Edulis—application to copper oxide nanoparticles. Comp Biochem Physiol Part C Toxicol Pharmacol 205:26–33

    Article  Google Scholar 

  • Chen Q, Lackmann C, Wang W, Seiler T-B, Hollert H, Shi H (2020) Microplastics lead to hyperactive swimming behaviour in adult zebrafish. Aquat Toxicol 224:105521

    Article  CAS  Google Scholar 

  • Choi JS, Jung Y-J, Hong N-H, Hong SH, Park J-W (2018) Toxicological effects of irregularly shaped and spherical microplastics in a marine teleost, the sheepshead minnow (Cyprinodon variegatus). Mar Pollut Bull 129(1):231–240

    Article  CAS  Google Scholar 

  • Cole M, Lindeque P, Halsband C, Galloway TS (2011) Microplastics as contaminants in the marine environment: a review. Mar Pollut Bull 62(12):2588–2597

    Article  CAS  Google Scholar 

  • Collignon A, Hecq JH, Glagani F, Voisin P, Collard F, Goffart A (2012) Neustonic microplastic and zooplankton in the North Western Mediterranean Sea. Mar Pollut Bull 64(4):861–864

    Article  CAS  Google Scholar 

  • Desforges JPW, Galbraith M, Dangerfield N, Ross PS (2014) Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean. Mar Pollut Bull 79(1–2):94–99

    Article  CAS  Google Scholar 

  • Détrée C, Gallardo-Escárate C (2018) Single and repetitive microplastics exposures induce immune system modulation and homeostasis alteration in the edible mussel Mytilus galloprovincialis. Fish Shellfish Immunol 83:52–60

    Article  Google Scholar 

  • Dong S, Cai W, Xia J, Sheng L, Wang W, Liu H (2021) Aggregation kinetics of fragmental PET nanoplastics in aqueous environment: Complex roles of electrolytes, pH and humic acid. Environ Pollut 268:115828

    Article  CAS  Google Scholar 

  • Espinosa C, Beltran JMG, Esteban MA, Cuesta A (2018) In vitro effects of virgin microplastics on fish head-kidney leucocyte activities. Environ Pollut 235:30–38

    Article  CAS  Google Scholar 

  • Free CM, Jensen OP, Mason SA, Eriksen M, Williamson NJ, Boldgiv B (2014) High-levels of microplastic pollution in a large, remote, mountain lake. Mar Poll Bull 85(1):156–163

    Article  CAS  Google Scholar 

  • Franco ME, Lavado R (2019) Applicability of in vitro methods in evaluating the biotransformation of polycyclic aromatic hydrocarbons (PAHs) in fish: Advances and challenges. Sci Total Environ 671:685–695

    Article  CAS  Google Scholar 

  • Fröhlich E (2018) Comparison of conventional and advanced in vitro models in the toxicity testing of nanoparticles. Artif Cells Nanomed Biotechnol 46(2):1091–1107

    Article  Google Scholar 

  • Gaspar TR, Chi RJ, Parrow MW, Ringwood AH (2018) Cellular bioreactivity of micro- and nano-plastic particles in oysters. Front Mar Sci 5:345

    Article  Google Scholar 

  • Gouin T, Roche N, Lohmann R, Hodges G (2011) A thermodynamic approach for assessing the environmental exposure of chemicals absorbed to microplastic. Environ Sci Technol 45:1466–1472

    Article  CAS  Google Scholar 

  • Greven AC, Merk T, Karagöz F, Mohr K, Klapper M, Boris Jovanović B, Dušan Palić (2016) Polycarbonate and polystyrene nanoplastic particles act as stressors to the innate immune system of fathead minnow (Pimephales promelas). Environ Toxicol Chem 35(12):3093–3100

    Article  CAS  Google Scholar 

  • Guimarães ATB, Estrela FN, Pereira PS, de Andrade Vieira JE, de Lima Rodrigues AS, Silva FG, Guilherme Malafaia G (2021) Toxicity of polystyrene nanoplastics in Ctenopharyngodon Idella juveniles: a genotoxic, mutagenic and cytotoxic perspective. Sci Total Environ 752:141937

    Article  Google Scholar 

  • Heinrich P, Braunbeck T (2019) Microplastic testing in vitro: realistic loading of pollutants, surfactant-free solid surface-dosing and bioanalytical detection using a sensitivity-optimized EROD assay. Toxicol in Vitro 54:194–201

    Article  CAS  Google Scholar 

  • Heinrich P, Braunbeck T (2020) Bioavailability of microplastic-bound pollutants in vitro: the role of adsorbate lipophilicity and surfactants. Comp Biochem Phys C 221:59–67

    Google Scholar 

  • Horton A, Walton A, Spurgeon D, Lahive E, Svendsen C (2017) Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci Total Environ 586:127–141

    Article  CAS  Google Scholar 

  • Huang D, Tao J, Cheng M, Deng R, Chen S, Yin L, Li R (2020) Microplastics and nanoplastics in the environment: macroscopic transport and effects on creatures. JHaz Mat 407:124399

    Article  Google Scholar 

  • Jaikumar G, Brun NR, Vijver MG, Bosker T (2019) Reproductive toxicity of primary and secondary microplastics to three cladocerans during chronic exposure. Environ Pollut 249:638–646

    Article  CAS  Google Scholar 

  • Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R, Law KL (2015) Plastic waste inputs from land into the ocean. Science 347(6223):768–771

    Article  CAS  Google Scholar 

  • Knauer K, Lampert C, Gonzalez-Valero J (2007) Comparison of in vitro and in vivo acute fish toxicity in relation to toxicant mode of action. Chemosphere 68(8):1435–1441

    Article  CAS  Google Scholar 

  • Kanhai LDK, Officer R, Lyashevska O, Thompson RC, O’Connor I (2017) Microplastic abundance, distribution and composition along a latitudinal gradient in the Atlantic Ocean. Mar Pollut Bull 115(1-2):307–314

    Article  CAS  Google Scholar 

  • Koelmans AA, Besseling E, Foekema EM (2014) Leaching of plastic additives to marine organisms. Environ Pollut 187:49–5

    Article  CAS  Google Scholar 

  • Lebreton L, van der Zwet J, Damsteeg J-W, Slat B, Andrady A, Reisser J (2017) River plastic emissions to the world’s oceans. Nat Commun 7(8):15611

    Article  Google Scholar 

  • Le Bihanic F, Clérandeau C, Cormier B, Crebassa JC, Keiter SH, Beiras R, Morin B, Bégout M-L, Cousin X, Cachot J (2020) Organic contaminants sorbed to microplastics affect marine medaka fish early life stages development. Mar Pollut Bull 154:111059

    Article  Google Scholar 

  • Li Y, Liu Z, Yang Y, Jiang Q, Wu D, Huang Y, Jiao Y, Chen Q, Huang Y, Zhao Y (2020) Effects of nanoplastics on energy metabolism in the oriental river prawn (Macrobrachium nipponense). Environ Pollut 268(A):115890

  • Lin L, Zuo LZ, Peng JP, Cai LQ, Fok L, Yan Y, Li HX, Xu XR (2018) Occurrence and distribution of microplastics in an urban river: a case study in the Pearl River along Guangzhou City, China. Sci Total Environ 644:375–381

    Article  CAS  Google Scholar 

  • Liu Z, Li Y, Perez E, Jiang Q, Chen Q, Jiao Y, Huang Y, Yang Y, Zhao Y (2021) Polystyrene nanoplastic induces oxidative stress, immune defense, and glycometabolism change in Daphnia pulex: application of transcriptome profiling in risk assessment of nanoplastics. J Haz Mat 402:123778

    Article  CAS  Google Scholar 

  • Lusher AL, McHugh M, Thompson RC (2013) Occurrence of microplastics in the gastrointestinal tract of Pelagic and Demersal Fish from the English Channel. Mar Pollut Bull 67(1–2):94–99

    Article  CAS  Google Scholar 

  • Mckim JM, Baas H, Yoon M, Clewell H, Andersen ME (2016) Integrated human multi-organ culture plate for estimating systemic toxicity in vitro. Toxicol Letters 258:S31

    Article  Google Scholar 

  • Obbard RW (2018) Microplastics in polar regions: the role of long-range transport. Curr Opin Environ Sci Health 1:24–29

    Article  Google Scholar 

  • Pannetier P, Cachot J, Clérandeau C, Faure F, Van Arkel K,F, de Alencastro L, Levasseur C, Sciacca F, Bourgeois J-P, Morin B (2019) Toxicity assessment of pollutants sorbed on environmental sample microplastics collected on beaches: part I-Adverse effects on fish cell line. Environ Pollut 248:1088–1097

    Article  CAS  Google Scholar 

  • Paul-Pont I, Tallec K, Gonzalez-Fernandez C, Lambert C, Vincent D, Mazurais D, Zambonino-Infante JL, Brotons G, Lagarde F, Fabioux C, Soudant P, Huvet A (2018) Constraints and priorities for conducting experimental exposures of marine organisms to microplastics. Front Mar Sci 5:252

    Article  Google Scholar 

  • Phuong NN, Poirier L, Pham QT, Lagarde F, Zalouk-Vergnoux A (2018) Factors influencing the microplastic contamination of bivalves from the French Atlantic coast: location, season and/or mode of life? Mar Pollut Bull 129:664–674

    Article  CAS  Google Scholar 

  • Pittura L, Avio CG, Giuliani ME, d’Errico G, Keiter SH, Cormier B, Gorbi S, Regoli F (2018) Microplastics as vehicles of environmental PAHs to marine organisms: combined chemical and physical hazards to the Mediterranean Mussels, Mytilus galloprovincialis. Front Mar Sci 5:103

    Article  Google Scholar 

  • Plastics-Europe (2019) Plastics the facts, an analysis of European plastics production, demand and waste data. Plastics-Europe Market Research Group (PEMRG) and Conversio Market & Strategy GmbH. https://www.plasticseurope.org/application/files/9715/7129/9584/FINAL_web_version_Plastics_the_facts2019_14102019.pdf

  • Qiao R, Sheng C, Lu Y, Zhang Y, Ren H, Lemos B (2019) Microplastics induce intestinal inflammation, oxidative stress, and disorders of metabolome and microbiome in zebrafish. Sci Total Environ 662:246–253

    Article  CAS  Google Scholar 

  • Revel M, Yakovenko N, Caley T, Guillet C, Châtel A, Mouneyrac C (2018) Accumulation and immunotoxicity of microplastics in the estuarine worm Hediste diversicolor in environmentally relevant conditions of exposure. Environ Sci Pollut Res 27(4):3574–3583

    Article  Google Scholar 

  • Revel M, Châtel A, Mouneyrac C (2019) Microplastic in aquatic environment. In: Gross E, Garric L (eds.) Ecotoxicology—new challenges and new approaches. ISTE and ScienceDirect, Lyon (France)

  • Rinkevich B (2005) Marine invertebrate cell cultures: new millennium trends. Mar Biotechnol 7(5):429–439

    Article  CAS  Google Scholar 

  • Rodrigues MO, Abrantes N, Gonçalves FJM, Nogueira H, Marques JC, Gonçalves AMM (2018) Spatial and temporal distribution of microplastics in water and sediments of a freshwater system (Antuã River, Portugal). Sci Total Environ 633:1549–1559

    Article  CAS  Google Scholar 

  • Ruiz-Palacios M, Almeida M, Martins MA, Oliveira M, Ángeles Esteban M, Cuesta A (2020) Establishment of a brain cell line (FuB-1) from mummichog (Fundulus heteroclitus) and its application to fish virology, immunity and nanoplastics toxicology. Sci Total Environ 708:134821

    Article  CAS  Google Scholar 

  • Sadri SS, Thompson RC (2014) On the quantity and composition of floating plastic debris entering and leaving the Tamar Estuary, Southwest England. Mar Pollut Bull 81(1):55–60

    Article  CAS  Google Scholar 

  • Setälä O, Fleming-Lehtinen V, Lehtiniemi M (2014) Ingestion and transfer of microplastics in the planktonic food web. Environ Poll 185:77–83

    Article  Google Scholar 

  • Stone V, Pozzi-Mucelli S, Tran L, Aschberger K, Sabella S, Vogel U, Poland C, Balharry D, Fernandes T, Gottardo S, Hankin S, Hartl MGJ, Hartmann N, Hristozov D, Hund-Rinke K, Johnston H, Marcomini A, Panzer O, Roncato D, Saber AT, Wallin H, Scott-Fordsmand JJ (2014) ITS-NANO - Prioritising nanosafety research to develop a stakeholder driven intelligent testing strategy. Particle and Fibre Toxicology 11(1):9

  • Sussarellu R, Suquet M, Thomas Y, Lambert C, Fabioux C, Pernet MEJ et al. (2016) Oyster reproduction is affected by exposure to polystyrene microplastics. Proc Natl Acad Sci USA 113:2430–2435

    Article  CAS  Google Scholar 

  • Tallec K, Huvet A, Di Poi C, Gonzalez-Fernandez C, Lambert C, Petton B, Le Goïc N, Berchel M, Soudant P, Paul-Pont I (2018) Nanoplastics impaired oyster free living stages, gametes and embryos. Environ Pollut 242:1226–1235

    Article  CAS  Google Scholar 

  • Ter Halle A, Jeanneau L, Martignac M, Jardé E, Pedrono B, Brach L, Gigault J (2017) Nanoplastic in the North Atlantic subtropical gyre. Environ Sci Technol 51(23):13689–13697

    Article  Google Scholar 

  • Tosetto L, Williamson JE, Brown C (2017) Trophic transfer of microplastics does not affect fish personality. Anim Behav 123:159–167

    Article  Google Scholar 

  • van der Hal N, Yeruham E, Shukis D, Rilov G, Astrahan P, Angel DL (2020) Uptake and incorporation of PCBs by eastern Mediterranean rabbitfish that consumed microplastics. Mar Pollut Bull 150:110697

    Article  Google Scholar 

  • Wang Y, Mao Z, Zhang M, Ding G, Sun J, Du M, Liu Q, Cong Y, Jin F, Zhang W, Wang J (2019) The uptake and elimination of polystyrene microplastics by the brine shrimp, Artemia parthenogenetica, and its impact on its feeding behavior and intestinal histology. Chemosphere 234:123–131

    Article  CAS  Google Scholar 

  • Wolfram J, Yang Y, Shen J, Moten A, Chen C, Shen H, Ferrari M, Zhao Y (2014) The nano-plasma interface: implications of the protein corona. Colloids Surf B Biointerfaces 124:17–24

    Article  CAS  Google Scholar 

  • Wong JKH, Lee KK, Tang KHD, Yap PS (2020) Microplastics in the freshwater and terrestrial environments: prevalence, fates, impacts and sustainable solutions. Sci Total Environ 719:137512

    Article  CAS  Google Scholar 

  • Zitouni N, Bousserrhine N, Belbekhouche S, Missawi O, Alphonse V, Boughatass I, Banni M (2020) First report on the presence of small microplastics (≤3 Μm) in tissue of the commercial fish Serranus Scriba (Linnaeus. 1758) from Tunisian Coasts and Associated Cellular Alterations. Environ Poll 263:114576

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AC set up and designed the review, CR did the literature search, and CR and MR wrote the review with the contribution of AC.

Corresponding author

Correspondence to Messika Revel.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

This study does not involve any animal experimentation.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Revel, M., Roman, C. & Châtel, A. Is cell culture a suitable tool for the evaluation of micro- and nanoplastics ecotoxicity?. Ecotoxicology 30, 421–430 (2021). https://doi.org/10.1007/s10646-021-02355-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-021-02355-z

Keywords

Navigation