Skip to main content

Advertisement

Log in

Changes in urinary arsenic species and methylation capacity in original arsenic exposure cohort after water quality improvement

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Water quality improvement is the most efficient way to prevent arsenic exposure. After the cessation of arsenic ingestion, arsenic methylation capacity of the exposed population can change significantly. The factors associated with these changes remain poorly understood. Therefore, arsenic methylation capacity in a study cohort was estimated before and after water quality improvement in the present study. Results indicated that urinary content of the arsenic species in the study cohort significantly decreased after water quality improvement. In addition, the proportions of inorganic arsenic (%iAs) and monomethyl arsenic acid (%MMA) were significantly decreased, while proportions of dimethyl arsenic (%DMA) increased. The primary methylation index (PMI) and secondary methylation index (SMI) increased from 0.85 to 0.92 and 0.82 to 0.84, respectively. Arsenic species urinary content and arsenic methylation index varied slightly between the study cohort after water quality improvement and the control cohort. The rate of increase in PMI was higher than that in SMI. The study group aged 31–50 years had the highest increase in PMI. Logistic regression revealed that %DMA before water quality improvement was negatively associated with the increase in PMI, while %iAs were positively related, and %MMA were positively associated with the increase in SMI. It is concluded that urinary arsenic species content and arsenic methylation capacity increased to the levels of the control cohort after water quality improvement. An increase in primary arsenic methylation capacity may be a burden on the secondary arsenic methylation capacity. The main role of arsenic methylation capacity recovery may be the cessation of arsenic exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bai, Y. (2017). Study on urinary arsenic level and its influencing factors in adults of Yunnan province. (Doctoral dissertation). (in Chinese)

  • Del Razo, L. M., García-Vargas, G. G., Vargas, H., Albores, A., Gonsebatt, M. E., Montero, R., et al. (1997). Altered profile of urinary arsenic metabolites in adults with chronic arsenicism a pilot study. Archives of Toxicology, 71(4), 211–217.

    Article  Google Scholar 

  • Hopenhayn-Rich, C., Biggs, M. L., Kalman, D. A., Moore, L. E., & Smith, A. H. (1996a). Arsenic methylation patterns before and after changing from high to lower concentrations of arsenic in drinking water. Environmental Health Perspectives, 104(11), 1200–1207.

    Article  CAS  Google Scholar 

  • Hopenhayn-Rich, C., Biggs, M. L., Smith, A. H., Kalman, D. A., & Moore, L. E. (1996b). Methylation study of a population environmentally exposed to arsenic in drinking water. Environmental Health Perspectives, 104(6), 620–628.

    Article  CAS  Google Scholar 

  • Hsu, K., Tsui, K., Hsu, L., Chiou, H., & Chen, C. (2017). Dose-response relationship between inorganic arsenic exposure and lung cancer among arseniasis residents with low methylation capacity. Cancer Epidemiology, Biomarkers and Prevention, 26(5), 756–761.

    Article  CAS  Google Scholar 

  • Hsueh, Y., Chen, W., Lee, C., Chien, S., Shiue, H., Huang, S., et al. (2016). Association of arsenic methylation capacity with developmental delays and health status in children: A prospective case–control trial. Scientific Reports, 6, 37287.

    Article  CAS  Google Scholar 

  • Huang, Y., Huang, Y., Hsueh, Y., Wang, T., Yang, M., & Chen, C. (2009). Changes in urinary arsenic methylation profiles in a 15-year interval after cessation of arsenic ingestion in southwest Taiwan. Environmental Health Perspectives, 117(12), 1860–1866.

    Article  CAS  Google Scholar 

  • Huang, C., Lin, Y., Shiue, H., Chen, W., Su, C., Pu, Y., et al. (2018). Comparison of arsenic methylation capacity and polymorphisms of arsenic methylation genes between bladder cancer and upper tract urothelial carcinoma. Toxicology Letters, 295, 64–73.

    Article  CAS  Google Scholar 

  • Huang, Y., Tseng, C., Huang, Y., Yang, M., Chen, C., & Hsueh, Y. (2007). Arsenic methylation capability and hypertension risk in subjects living in arseniasis-hyperendemic areas in southwestern Taiwan. Toxicology and Applied Pharmacology, 218(2), 135–142.

    Article  CAS  Google Scholar 

  • Kuo, C., Moon, K., Wang, S., Silbergeld, E., & Navas-Acien, A. (2017). The association of arsenic metabolism with cancer, cardiovascular disease, and diabetes: A systematic review of the epidemiological evidence. Environmental Health Perspectives, 125(8), 087001.

    Article  Google Scholar 

  • Kurzius-Spencer, M., Da Silva, V., Thomson, C. A., Hartz, V., Hsu, C. H., Burgess, J. L., et al. (2017). Nutrients in one-carbon metabolism and urinary arsenic methylation in the national health and nutrition examination survey (NHANES) 2003–2004. Science of the Total Environment, 607–608, 381–390.

    Article  Google Scholar 

  • Li, Y., Hu, J., & Jia, Y. (2007). Study on the effect of water improvement in drinking-water type endemic arsenism area. Chinese Journal of Public Health Management, 24(4), 432–435. (in Chinese).

    Google Scholar 

  • Litter, M. I., Ingallinella, A. M., Olmos, V., Savio, M., Difeo, G., Botto, L., et al. (2019). Arsenic in Argentina: Occurrence, human health, legislation and determination. Science of the Total Environment, 676, 756–766.

    Article  CAS  Google Scholar 

  • Murcott, S. (2012). Arsenic contamination in the world—An international sourcebook. London: IWA Publishing.

    Google Scholar 

  • Pace, C., Smith-Gagen, J., & Angermann, J. (2018). Arsenic methylation capacity and metabolic syndrome in the 2013–2014 U.S. national health and nutrition examination survey (NHANES). International Journal of Environmental Research and Public Health, 15(2), 168.

    Article  Google Scholar 

  • Rasheed, H., Kay, P., Slack, R., & Gong, Y. (2017). Association between inefficient arsenic methylation capacity and demographic characteristics on the risk of skin lesions. Toxicology and Applied Pharmacology, 339, 42–51.

    Article  Google Scholar 

  • Rodriguez-Lado, L., Sun, G., Berg, M., Zhang, Q., Xue, H., Zheng, Q., et al. (2013). Groundwater arsenic contamination throughout China. Science, 341(6148), 866–868.

    Article  CAS  Google Scholar 

  • Sanjrani, M. A., Zhou, B., Zhao, H., Bhutto, S. A., Munner, A. S., & Xia, S. (2019). Arsenic contaminated groundwater in China and its treatment options: A review. Applied Ecology and Environmental Research, 17(2), 1655–1683.

    Article  Google Scholar 

  • Shen, H., Niu, Q., Xu, M., Rui, D., Xu, S., Feng, G., et al. (2016). Factors affecting arsenic methylation in arsenic-exposed humans: A systematic review and meta-analysis. International Journal of Environmental Research and Public Health, 13(2), 205.

    Article  Google Scholar 

  • Signes-Pastor, A. J., Carey, M., Vioque, J., Navarrete-Muñoz, E. M., Rodríguez-Dehli, C., Tardón, A., et al. (2017). Urinary arsenic speciation in children and pregnant women from Spain. Exposure and Health, 9(2), 105–111.

    Article  CAS  Google Scholar 

  • Skröder Löveborn, H., Kippler, M., Lu, Y., Ahmed, S., Kuehnelt, D., Raqib, R., et al. (2016). Arsenic metabolism in children differs from that in adults. Toxicological Sciences, 152(1), 29–39.

    Article  Google Scholar 

  • Spratlen, M. J., Gamble, M. V., Grauperez, M., Kuo, C. C., Best, L. G., Yracheta, J., et al. (2017). Arsenic metabolism and one-carbon metabolism at low-moderate arsenic exposure: Evidence from the strong heart study. Food and Chemical Toxicology, 105, 387–397.

    Article  CAS  Google Scholar 

  • Su, L., Cheng, Y., Lin, S., Wu, C., Gu, H., & Jin, Y. (2007). Study of relationship between arsenic methylation and skin lesion in a population with long-term high arsenic exposure. Journal of Hygiene Research, 36(3), 336–340. (in Chinese).

    CAS  Google Scholar 

  • Sun, G., Xu, Y., Li, X., Jin, Y., Li, B., & Sun, X. (2007). Urinary arsenic metabolites in children and adults exposed to arsenic in drinking water in Inner Mongolia, China. Environmental Health Perspectives, 115(4), 648–652.

    Article  CAS  Google Scholar 

  • Tseng, C. (2009). A review on environmental factors regulating arsenic methylation in humans. Toxicology and Applied Pharmacology, 235(3), 338–350.

    Article  CAS  Google Scholar 

  • Tseng, C., Huang, Y., Huang, Y., Chung, C., Yang, M., Chen, C., et al. (2005). Arsenic exposure, urinary arsenic speciation, and peripheral vascular disease in blackfoot disease-hyperendemic villages in Taiwan. Toxicology and Applied Pharmacology, 206(3), 299–308.

    Article  CAS  Google Scholar 

  • Wei, B., Yu, J., Kong, C., Li, H., Yang, L., Xia, Y., et al. (2018). Effects of arsenic methylation and metabolism on the changes of arsenic-related skin lesions. Environmental Science and Pollution Research, 25(24), 24394–24402.

    Article  CAS  Google Scholar 

  • Wei, B., Yu, J., Li, H., Yang, L., Xia, Y., Wu, K., et al. (2016). Arsenic metabolites and methylation capacity among individuals living in a rural area with endemic arseniasis in Inner Mongolia, china. Biological Trace Element Research, 170(2), 300–308.

    Article  CAS  Google Scholar 

  • Xi, S., Sun, Q., Wang, F., Liu, S., Yan, L., Zhang, L., et al. (2014). The factors influencing urinary arsenic excretion and metabolism of workers in steel and iron smelting foundry. Journal of Exposure Science & Environmental Epidemiology, 24(1), 36–41.

    Article  CAS  Google Scholar 

  • Xie, H., & Zheng, Y. (2006). Arsenic levels in hair and urine before and after water supply improved in endemic arsenism areas in Xinjiang. Journal of Environment and Health, 23(5), 421–423. (in Chinese).

    CAS  Google Scholar 

  • Zhang, X., Wang, B., Cui, X., et al. (2018). Total arsenic concentrations in Chinese children’s urine by different geographic locations, ages, and genders. Environmental Geochemistry and Health, 40(3), 1027–1036.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work described in this paper was financially supported by the National Natural Science Foundation of China (Grant No. 41601559), the State Key Program of National Natural Science of China (Grant No. 41230749) and the Health and Family Planning Project of Inner Mongolia (Grant No. 201702045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binggan Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, C., Yang, L., Yu, J. et al. Changes in urinary arsenic species and methylation capacity in original arsenic exposure cohort after water quality improvement. Environ Geochem Health 42, 2841–2851 (2020). https://doi.org/10.1007/s10653-020-00523-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00523-4

Keywords

Navigation