Skip to main content

Advertisement

Log in

Development of groundwater sustainability index: a case study of western arid region of Rajasthan, India

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Groundwater, its availability, and/or its adequate supply play an important role to define the economic and environmental sustainability and social well-being of a community, especially when groundwater is the main source to fulfil the demand for domestic and agricultural uses. Humanity is under threat due to scarcity of freshwater, deterioration of its quality and rising water stress around the globe. The situations are expected to become even more acute/conflicting worldwide if cumulative efforts are not practiced. In order to maintain freshwater resources sustainably, they should be used in an effective and efficient manner without compromising the needs of the future generation. The present paper deals with the development of a groundwater sustainability index by taking into consideration of a case study of western Rajasthan, India. The framework for the development of groundwater sustainability index considered five dimensions of groundwater resources defined on the basis of fifteen indicators chosen for the study. Analytical hierarchy process has been applied in order to assess the importance of the selected dimensions of groundwater. The outcomes of the study clearly reflect that the situation of groundwater resources in the region is alarming and the future of groundwater resources is at stake. This study presents the actual status of sustainability of groundwater with particular reference to hyper-arid region of Rajasthan by integrating all important indicators related to protection and management of groundwater in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Asoka, A., Gleeson, T., Wada, Y., & Mishra, V. (2017). Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India. Nature Geoscience, 10(2), 109.

    CAS  Google Scholar 

  • Bartlett, A. A. (1999). Colorado’s population problem. Population Press, 5(6), 8–9.

    Google Scholar 

  • Batabyal, A. K., & Chakraborty, S. (2015). Hydrogeochemistry and water quality index in the assessment of groundwater quality for drinking uses. Water Environment Research, 87(7), 607–617.

    CAS  Google Scholar 

  • Bhakar, P., & Singh, A. P. (2018). Life cycle assessment of groundwater supply system in a hyper-arid region of India. Procedia CIRP, 69, 603–608. https://doi.org/10.1016/j.procir.2017.11.050.

    Article  Google Scholar 

  • Bhakar, P., & Singh, A. P. (2019). Groundwater quality assessment in a hyper-arid region of Rajasthan, India. Natural Resources Research, 28(2), 505–522.

    Google Scholar 

  • Bright, J. C., Bidwell, V. J., Robb, C., & Ward, J. C. (1998). Environmental performance indicators for groundwater. Technical paper no. 38. Wellington: Freshwater, Ministry for the Environment.

  • Brundtland, G. H. (1987). Report of the world commission on environment and development:Our common future”. United Nations.

  • Census of India. (2011). Office of the Registrar General & Census Commissioner, India, Ministry of Home Affairs, Government of India, 2011. http://censusindia.gov.in/. Last Accessed on 25 June, 2019.

  • CGWB. (2013). Groundwater Information Bikaner District Rajasthan, Central Groundwater Board, Western Region, Jaipur, 2013, Ministry of Water Resources, Government of India. http://cgwb.gov.in/District_Profile/Rajasthan/Bikaner.pdf. Last Accessed on 15 May, 2019.

  • CGWB. (2017). Dynamic ground water resources of India, Central Ground Water Board, Government of India. http://cgwb.gov.in/GW-Assessment/GWRA-2017-National-Compilation.pdf. Last Accessed on December 1, 2019.

  • Chaves, H. M., & Alipaz, S. (2007). An integrated indicator based on basin hydrology, environment, life, and policy: The watershed sustainability index. Water Resources Management, 21(5), 883–895.

    Google Scholar 

  • CIA. (2019). https://www.cia.gov/library/publications/the-world-factbook/fields.349.html. Last Accessed on December 1, 2019.

  • Cortés, A. E., Oyarzún, R., Kretschmer, N., Chaves, H., Soto, G., Soto, M., et al. (2018). Application of the watershed sustainability index to the Elqui river basin, North-Central Chile. Obras y Proyectos, 12, 57–69.

    Google Scholar 

  • Cullet, P., & Stephan, R. M. (2017). Introduction to ‘groundwater and climate change: Multi-level law and policy perspectives’. Water International, 42(6), 641–645.

    Google Scholar 

  • Damkjaer, S., & Taylor, R. (2017). The measurement of water scarcity: Defining a meaningful indicator. Ambio, 46(5), 513–531.

    Google Scholar 

  • Dandautiya, R., Singh, A. P., & Kundu, S. (2018). Impact assessment of fly ash on ground water quality: An experimental study using batch leaching tests. Waste Management and Research, 36(7), 624–634. https://doi.org/10.1177/0734242X18775484.

    Article  CAS  Google Scholar 

  • Dawe, C. J. (1990). Implications of aquatic animal health for human health. Environmental Health Perspectives, 86, 245–255.

    CAS  Google Scholar 

  • de Loe, R. C., Di Giantomasso, S. E., & Kreutzwiser, R. D. (2002). Local capacity for groundwater protection in Ontario. Environmental Management, 29(2), 217–233.

    Google Scholar 

  • Epa, U. S. (1998). Guidance on implementing the Capacity Development Provisions of the Safe Drinking Water Act Amendments of 1996. Washington, DC: United States Environmental Protection Agency, Office of Water.

    Google Scholar 

  • European Commission. (2019). Global human settlement. https://ghsl.jrc.ec.europa.eu/.

  • Falkenmark, M., Lundqvist, J., & Widstrand, C. (1989). Macro-scale water scarcity requires micro-scale approaches: Aspects of vulnerability in semi-arid development. Natural Resources Forum, 13(4), 258–267.

    CAS  Google Scholar 

  • Flint, R. W. (2004a). The sustainable development of water resources. Water Resources, 127, 41–51.

    Google Scholar 

  • Flint, R. W. (2004b). Sustainable development: What does sustainability mean to individuals in the conduct of their lives and businesses? Public Administration and Public Policy-New York, 108, 67–88.

    Google Scholar 

  • Gleick, P. H. (1996). Basic water requirements for human activities: Meeting basic needs. Water International, 21(2), 83–92.

    Google Scholar 

  • Gonzales, P., & Ajami, N. K. (2015). Urban water sustainability: An integrative framework for regional water management. Hydrology and Earth System Sciences Discussions, 12(11), 11291–11329.

    Google Scholar 

  • Government of India. (2019). Handbook of urban statistics, ministry of urban and housing affairs. http://mohua.gov.in/pdf/5c80e2225a124Handbook%20of%20Urban%20Statistics%202019.pdf. Last Accessed on December 2, 2019.

  • Green, T. R., Taniguchi, M., Kooi, H., Gurdak, J. J., Allen, D. M., Hiscock, K. M., et al. (2011). Beneath the surface of global change: Impacts of climate change on groundwater. Journal of Hydrology, 405(3–4), 532–560.

    Google Scholar 

  • Groundwater Year Book. (2016–2017). Rajasthan State, Central Groundwater Board, Western Region, Jaipur, August 2017. http://cgwb.gov.in/Regions/GW-year-Books/GWYB-%202016-17/Rajasthan.pdf. Last Accessed on 15 May, 2019.

  • Gurdak, J. J. (2017). Groundwater: Climate-induced pumping. Nature Geoscience, 10(2), 71.

    CAS  Google Scholar 

  • Holm, R., Singini, W., & Gwayi, S. (2016). Comparative evaluation of the cost of water in northern Malawi: From rural water wells to science education. Applied Economics, 48(47), 4573–4583.

    Google Scholar 

  • Ivey, J. L., De Loë, R. C., & Kreutzwiser, R. D. (2002). Groundwater management by watershed agencies: An evaluation of the capacity of Ontario’s conservation authorities. Journal of Environmental Management, 64(3), 311–331.

    Google Scholar 

  • Jacobs, K., Lebel, L., Buizer, J., Addams, L., Matson, P., McCullough, E., et al. (2016). Linking knowledge with action in the pursuit of sustainable water-resources management. Proceedings of the National Academy of Sciences, 113(17), 4591–4596.

    Google Scholar 

  • Juwana, I., Muttil, N., & Perera, B. J. C. (2012). Indicator-based water sustainability assessment—A review. Science of the Total Environment, 438, 357–371.

    CAS  Google Scholar 

  • Juwana, I., Perera, B. J. C., & Muttil, N. (2010). A water sustainability index for West Java-Part 2: Refining the conceptual framework using Delphi technique. Water Science and Technology, 62(7), 1641–1652.

    CAS  Google Scholar 

  • Kalhor, K., & Emaminejad, N. (2019). Sustainable development in cities: studying the relationship between groundwater level and urbanization using remote sensing data. Groundwater for Sustainable Development. https://doi.org/10.1016/j.gsd.2019.100243.

    Article  Google Scholar 

  • Kasim, A., Gursoy, D., Okumus, F., & Wong, A. (2014). The importance of water management in hotels: A framework for sustainability through innovation. Journal of Sustainable Tourism, 22(7), 1090–1107.

    Google Scholar 

  • Kefayati, M., Saghafian, B., Ahmadi, A., & Babazadeh, H. (2018). Empirical evaluation of river basin sustainability affected by inter-basin water transfer using composite indicators. Water and Environment Journal, 32(1), 104–111.

    Google Scholar 

  • Konar, M., Evans, T. P., Levy, M., Scott, C. A., Troy, T. J., Vörösmarty, C. J., et al. (2016). Water resources sustainability in a globalizing world: Who uses the water. Hydrological Processes, 30(18), 3330–3336.

    Google Scholar 

  • Kong, N., Li, Q., Sangwan, N., Kulzick, R., Matei, S., & Ariyur, K. (2016). An interdisciplinary approach for a water sustainability study. Papers in Applied Geography, 2(2), 189–200. https://doi.org/10.1080/23754931.2015.1116106.

    Article  Google Scholar 

  • Koop, S. H., & van Leeuwen, C. J. (2015). Assessment of the sustainability of water resources management: A critical review of the city blueprint approach. Water Resources Management, 29(15), 5649–5670.

    Google Scholar 

  • Kumar, M., Sharif, M., & Ahmed, S. (2019). Impact of urbanization on the river Yamuna basin. International Journal of River Basin Management, 25, 1–15.

    CAS  Google Scholar 

  • Liverman, D. M., Hanson, M. E., Brown, B. J., & Merideth, R. W. (1988). Global sustainability: Toward measurement. Environmental Management, 12(2), 133–143.

    Google Scholar 

  • Long, Y., Pan, J., Farooq, S., & Boer, H. (2016). A sustainability assessment system for Chinese iron and steel firms. Journal of Cleaner Production, 125, 133–144.

    Google Scholar 

  • Mekonnen, M. M., & Hoekstra, A. Y. (2016). Four billion people facing severe water scarcity. Science Advances, 2(2), e1500323.

    Google Scholar 

  • Mititelu-Ionuş, O. (2017). Watershed sustainability index development and application: Case study of the Motru River in Romania. Polish Journal of Environmental Studies, 26(5), 2095–2105.

    Google Scholar 

  • Naubi, I., Zardari, N. H., Shirazi, S. M., Roslan, N. A., Yusop, Z., & Haniffah, M. R. B. M. (2017). Ranking of Skudai river sub-watersheds from sustainability indices application of PROMETHEE method. International Journal of Geomate, 12(29), 124–131.

    Google Scholar 

  • OECD. (2004). OECD key environmental indicators. Paris: OECD.

  • OECD. Implementing the OECD principles on water governance-indicator framework and evolving practices. http://www.oecd.org/governance/implementing-the-oecd-principles-on-water-governance-9789264292659-en.htm. Last Accessed August 16, 2019.

  • PRI. (2007). Canadian Water Sustainability Index (CWSI) project report. Ottawa: Policy Research Initiative (PRI). Government of Canada.

    Google Scholar 

  • Raskin, P., Gleick, P., Kirshen, P., Pontius, G., & Strzepek, K. (1997). Water futures: Assessment of long-range patterns and problems. New York: Comprehensive Assessment of the Freshwater Resources of the World, SEI.

    Google Scholar 

  • Reilly, T. E., Dennehy, K. F., Alley, W. M., & Cunningham, W. L. (2008). Ground-water availability in the United States (no. 1323). Geological Survey (US).

  • Ryder, R. A., Edwards, C. J., International Joint Commission, & Great Lakes Fishery Commission. (1985). Conceptual approach for the application of biological indicators of ecosystem quality in the Great Lakes Basin.

  • Saaty, T. L. (1980). The analytic hierarchy process (p. 324). New York: McGraw-Hill.

    Google Scholar 

  • Sangwan, K. S., Bhakar, V., & Digalwar, A. K. (2018). Sustainability assessment in manufacturing organizations: Development of assessment models. Benchmarking: An International Journal, 25(3), 994–1027.

    Google Scholar 

  • Service Level Benchmarking Gazette Notification. (2018–2019). Government of Rajasthan. http://cmar-india.org/Downloads.aspx. Last Accessed on 07 August, 2019.

  • Shanaghan, P. E., Kline, I. P., Beecher, J. A., & Jones, R. T. (1998). SDWA capacity development. Journal-American Water Works Association, 90(5), 51–59.

    CAS  Google Scholar 

  • Shen, L. Y., Ochoa, J. J., Shah, M. N., & Zhang, X. (2011). The application of urban sustainability indicators—A comparison between various practices. Habitat International, 35(1), 17–29.

    Google Scholar 

  • Shiklomanov, I. A. (1997). Comprehensive assessment of the freshwater resources of the world—Assessment of water resources and water availability in the world. Geneva: WMO.

    Google Scholar 

  • Shilling, F., Khan, A., Juricich, R., & Fong, V. (2013). Using indicators to measure water resources sustainability in California. In World environmental and water resources congress 2013: Showcasing the future (pp. 2708–2715).

  • Singh, A. P. (2008). An integrated fuzzy approach to assess water resources’ potential in a watershed. ICFAI Journal of Computational Mathematics, 1(1), 7–23.

    Google Scholar 

  • Singh, A. P., & Ghosh, S. K. (2003). Conceptual modeling and management of water quality in a River Basin. In A. L. Ramanathan & Ramesh (Eds.), Recent trends in hydrogeochemistry (pp. 207–220). New Delhi: Capital Books.

    Google Scholar 

  • Singh, A. P., Khakolia, A., Tavanshetti, S., & Yadav, J. (2019). Groundwater quality assessment using GIS and fuzzy logic—A case study of Jhunjhunu District. Pollution Research, 38(3), 655–662.

    CAS  Google Scholar 

  • Singh, A. P., Vidyarthi, A. K., Madan, Karan, & Singh, A. (2017). Status of environmental pollution in Agra industrial cluster: An IEPI approach. Pollution Research, 36(3), 580–589.

    CAS  Google Scholar 

  • Singhal, D. C., Joshi, H., & Mishra, S. (2015). Assessment of ground water sustainability for a subtropical town in Ganga plain: A case study from North-India. Journal of Groundwater Research, 3(4/1), 27–43.

    Google Scholar 

  • Srinivas, R., Bhakar, P., & Singh, A. P. (2015). Groundwater quality assessment in some selected area of Rajasthan, India using fuzzy multi-criteria decision making tool. Aquatic Procedia, 4, 1023–1030. https://doi.org/10.1016/j.aqpro.2015.02.129.

    Article  Google Scholar 

  • Srinivas, R., & Singh, A. P. (2018). Impact assessment of industrial wastewater discharge in a river basin using interval-valued fuzzy group decision-making and spatial approach. Environment, Development and Sustainability, 20(5), 2373–2397. https://doi.org/10.1007/s10668-017-9994-9.

    Article  Google Scholar 

  • Srinivas, R., Singh, A. P., Gupta, A. A., & Kumar, P. (2018). Holistic approach for quantification and identification of pollutant sources of a river basin by analyzing the open drains using an advanced multivariate clustering. Environmental Monitoring and Assessment, 190(12), 720.

    CAS  Google Scholar 

  • Study on Planning of Water Resources of Rajasthan. Water supply and demand by districts. Final report no. 4.6, October 2014. http://water.rajasthan.gov.in/content/dam/water/state-water-resources-planningdepartment/tahaldata/Final%20Report%204.6/Volume1%20Main%20Report/Report%204.6.%20IN-24740-R13-077_Part%20A%20and%20B.pdf. Last Accessed on 18 May, 2019.

  • Sullivan, C. (2002). Calculating a water poverty index. World Development, 30(7), 1195–1210.

    Google Scholar 

  • Sullivan, A., White, D., Larson, K., & Wutich, A. (2017). Towards water sensitive cities in the Colorado River Basin: A comparative historical analysis to inform future urban water sustainability transitions. Sustainability, 9(5), 761.

    Google Scholar 

  • TERI. (2017). Study on assessment of water foot prints of India’s long term energy scenarios. New Delhi: The Energy and Resources Institute (TERI). https://www.niti.gov.in/writereaddata/files/document_publication/Report%20Assessment%20of%20Water%20Foot%20Prints%20of%20India’s%20Long%20Term%20Energy%20Scenarios_TERI%202017.pdf. Last Accessed on 15 May, 2019.

  • UN. (1992). The United Nations conference on environment and development (pp. 3–14). Rio de Janeiro: Earth Summit.

  • UNEP. (2012). Measuring water use in a green economy, United Nations Environment Programme, International Resource Panel, 2012. https://waterfootprint.org/media/…/UNEP-2012-MeasuringWaterUse_1.pdf. Last Accessed on 10 July, 2019.

  • UNSD. Water indicators and statistics. Abuja, 19–23 May 2008. https://unstats.un.org/unsd/environment/envpdf/UNSD_UNEP_ECOWAS%20Workshop/Session%2004-4-1%20Introduction%20to%20water%20statistics%20(UNSD).pdf. Last Accessed on August 15, 2019.

  • UNSDG. Sustainable development goals 6.4, 2015. https://sustainabledevelopment.un.org/sdg6. Last Accessed on: 15 May 2019.

  • Urban Rajasthan Status & Opportunities in Septage. National Institute of Urban Affairs, Government of Rajasthan, 2017. https://scbp.niua.org/download.php?fn=Urban%20Rajasthan-%20Status%20and%20Opportunities%20in%20Septage.pdf. Last Accessed on 27 June, 2019.

  • Veleva, V., & Ellenbecker, M. (2001). Indicators of sustainable production: Framework and methodology. Journal of Cleaner Production, 9(6), 519–549.

    Google Scholar 

  • Vollmer, D., Regan, H. M., & Andelman, S. J. (2016). Assessing the sustainability of freshwater systems: A critical review of composite indicators. Ambio, 45(7), 765–780.

    Google Scholar 

  • Vrba, J., Girman, J., van der Gun, J., Haie, N., Hirata, R., Lopez-Gunn, E., … & Wallin, B. (2007). Groundwater resources sustainability indicators (p. 114). A. Lipponen (Ed.). Paris: Unesco.

  • Wada, Y., & Bierkens, M. F. (2014). Sustainability of global water use: Past reconstruction and future projections. Environmental Research Letters, 9(10), 104003.

    Google Scholar 

  • Wang, Q., Li, S., & Li, R. (2019). Evaluating water resource sustainability in Beijing, China: Combining PSR model and matter-element extension method. Journal of Cleaner Production, 206, 171–179.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit Pratap Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A.P., Bhakar, P. Development of groundwater sustainability index: a case study of western arid region of Rajasthan, India. Environ Dev Sustain 23, 1844–1868 (2021). https://doi.org/10.1007/s10668-020-00654-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-020-00654-9

Keywords

Navigation