Skip to main content
Log in

Use of Methods of Spectral Modeling and Computer-Aided Prediction of Viscoelasticity to Determine Functionality of Nonwoven Polymeric Materials

  • Published:
Fibre Chemistry Aims and scope

Use of methods of spectral modeling and computer-aided prediction of viscoelasticity of nonwoven polymeric materials to determine their functionality is studied. The proposed methods can be used to solve technological problems of sampling nonwoven polymeric materials possessing the desired functional and performance properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Makarov, Izv. Vuz. Tekhnol. Tekst. Prom., No. 2, 12-16 (2000).

  2. A. G. Makarov, Izv. Vuz. Tekhnol. Tekst. Prom., No. 2, 13-17 (2002).

  3. A. G. Makarov, N. V. Pereborova, et al., Khim. Volokna, No. 5, 44-47 (2013).

  4. V. V. Golovina, P. P. Rymkevich, et al., Khim. Volokna, No. 6, 33-40 (2013).

  5. P. P. Rymkevich, A. A. Romanova, et al., J. Macromol. Sci. Part B: Physics, 52, No.12, 1829-1847 (2013).

  6. A. G. Makarov, G. Y. Slutsker, and N. V. Drobotun, Techn. Phys., 60, No. 2, 240-245 (2015).

    Article  CAS  Google Scholar 

  7. A. G. Makarov, G. Y. Slutsker, et al., Fiz. Tv. Tela, 58, No. 4, 814-820 (2015).

  8. A. G. Makarov, A. V. Demidov, et al., Khim. Volokna, No. 6, 60-67 (2015).

  9. A. G. Makarov, N. V. Pereborova, et al., Ibid., 68-72.

  10. A. G. Makarov, N. V. Pereborova, et al., Izv. Vuz. Tekhnol. Tekst. Prom., No. 5 (359), 48-58 (2015).

  11. A. G. Makarov, A. V. Demidov, et al., Izv. Vuz. Tekhnol. Tekst. Prom., No. 6 (360), 194-205 (2015).

  12. A. G. Makarov, N. V. Pereborova, et al., Khim. Volokna, No. 1, 37-42 (2016).

  13. A. G. Makarov, A. V. Demidov, et al., Khim. Volokna, No. 2, 52-58 (2016).

  14. A. V. Demidov, A. G. Makarov, et al., Izv. Vuz. Tekhnol. Tekst. Prom., No. 1 (367), 250-258 (2017).

  15. A. G. Makarov, N. V. Pereborova, et al., Izv. Vuz. Tekhnol. Tekst. Prom., No. 2 (368), 309-313 (2017).

  16. A. G. Makarov, N. V. Pereborova, et al., Izv. Vuz. Tekhnol. Tekst. Prom., No. 4 (370), 287-292 (2017).

  17. A. G. Makarov, N. V. Pereborova, et al., Khim. Volokna, No. 1, 69-73 (2017).

  18. A. G. Makarov, N. V. Pereborova, et al., Khim. Volokna, No. 2, 59-63 (2017).

  19. A. V. Demidov, A. G. Makarov, et al., Khim. Volokna, No. 4, 46-51 (2017).

  20. N. V. Pereborova, A. V. Demidov, et al., Khim. Volokna, No. 2, 36-39 (2018).

  21. A. G. Makarov, N. V. Pereborova, et al., Khim. Volokna, No. 3, 94-97 (2018).

  22. N. V. Pereborova, A. G. Makarov, et al., Khim. Volokna, No. 4, 54-56 (2018).

  23. A. G. Makarov, N. V. Pereborova, et al., Khim. Volokna, No. 4, 117-120 (2018).

  24. N. V. Pereborova, A. G. Makarov, et al., Khim. Volokna, No. 5, 89-92 (2019).

  25. N. V. Pereborova, A. G. Makarov, et al., Khim. Volokna, No. 6, 3-6 (2018).

  26. N. V. Pereborova, A. G. Makarov, et al., Khim. Volokna, No. 6, 87-90 (2018).

  27. N. V. Pereborova, A. V. Demidov, et al., Izv. Vuz. Tekhnol. Tekst. Prom., No. 2 (374), 251-255 (2018).

  28. N. V. Pereborova, A. G. Makarov, et al., Izv. Vuz. Tekhnol. Tekst. Prom., No. 3 (375), 253-257 (2018).

  29. N. V. Pereborova, A. G. Makarov, et al., Khim. Volokna, No. 5, 68-70 (2019).

  30. N. V. Pereborova, A. G. Makarov, et al., Khim. Volokna, No. 5, 71-73 (2019).

  31. N. V. Pereborova, A. V. Demidov, et al., Izv. Vuz. Tekhnol. Tekst. Prom., No. 2 (380), 192-198 (2019).

  32. N. V. Pereborova, A. V. Demidov, et al., Izv. Vuz. Tekhnol. Tekst. Prom., No. 3 (381), 242-247 (2019).

  33. N. V. Pereborova, A. G. Makarov, et al., Izv. Vuz. Tekhnol. Tekst. Prom., 41, No. 3, 90-99 (2018).

  34. N. V. Pereborova, A. G. Makarov, et al., Vestn. Sankt-Peterburg. Gos. Univ. Tekhnol. Diz., Ser. 1, Estestv. Tekhnich. Nauki, No. 1, 109-119 (2018).

  35. N. V. Pereborova, Dizain. Materialy. Tekhnologiya, No. 4 (39), 98-102 (2015).

  36. N. V. Pereborova, Vestn. Sankt-Peterburg. Gos. Univ. Tekhnol. Diz., Ser. 1, Estestv. Tekhnich. Nauki, No. 4, 60-66 (2015).

  37. N. V. Pereborova, Izv. Vuz. Tekhnol. Tekst. Prom., 29, No. 3, 11-19 (2015).

    Google Scholar 

  38. N. V. Pereborova, ibid., 35-42.

Download references

This work was financed under the grant of the President of the Russian Federation MK-1210.2020.8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Egorov.

Additional information

Translated from Khimicheskie Volokna, No. 3, pp. 85-88, May-June, 2020

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egorov, M.A., Makarova, A.A., Konovalov, A.S. et al. Use of Methods of Spectral Modeling and Computer-Aided Prediction of Viscoelasticity to Determine Functionality of Nonwoven Polymeric Materials. Fibre Chem 52, 219–222 (2020). https://doi.org/10.1007/s10692-020-10184-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10692-020-10184-9

Navigation