Skip to main content
Log in

Modeling multiscalar influences on natural hazards vulnerability: a proof of concept using coastal hazards in Sarasota County, Florida

  • Published:
GeoJournal Aims and scope Submit manuscript

Abstract

Quantitative vulnerability modeling provides local decision makers and planners with tangible scores that they can utilize to develop and implement effective mitigation strategies. Considering appropriate scale and quantitative methods in vulnerability assessments can help decision makers develop hazard mitigation policies that are effective at the jurisdictional level at which they are implemented. Several types of statistical approaches such as principal component analysis, classical regression and simultaneous autoregressive models have been used to measure vulnerability at various scales (e.g. state or county), but these approaches have limitations for measuring sub-county vulnerability. This paper discusses existing statistical methods utilized in vulnerability assessments and presents a hierarchical generalized linear regression model (Hierarchical GLM) with multiscalar indicators and spatial components. Our model results illustrate that certain indicators are spatially and scalar dependent, providing evidence that examining vulnerability at a sub-county scale while also maintaining a multiscalar perspective offers additional information about social-environmental vulnerability than provided by typical approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abramson, D. M., Grattan, L. M., Mayer, B., et al. (2015). The resilience activation framework: A conceptual model of how access to social resources promotes adaptation and rapid recovery in post-disaster settings. The Journal of Behavioral Health Services and Research, 42(1), 42–57.

    Google Scholar 

  • Adger, W. N. (2006). Vulnerability. Global Environmental Change, 16(3), 268–281.

    Google Scholar 

  • Aldoory, L., Kim, J.-N., & Tindall, N. (2010). The influence of perceived shared risk in crisis communication: Elaborating the situational theory of publics. Public Relations Review, 36(2), 134–140.

    Google Scholar 

  • Anselin, L. (1995). Local Indicators of Spatial Association—LISA. Geographical Analysis, 27(2), 93.

    Google Scholar 

  • Anselin, L., Gallo, J. L., & Jayet, H. (2008). Spatial panel econometrics. In L. Mátyás & P. Sevestre (Eds.), The econometrics of panel data. Advanced studies in theoretical and applied econometrics (vol 46, pp. 625–660). Berlin: Springer.

  • Arbia, G., & Petrarca, F. (2011). Effects of MAUP on spatial econometric models. Letters in Spatial and Resource Sciences, 4(3), 173–185.

    Google Scholar 

  • Arbuckle, J. G., Randle, R., & Wilson, P. A. J. (1991). Emergency planning and community right-to-know Act (EPCRA). In J. G. Arbuckle, M. E. Bosco, D. R. Case, E. P. Laws, J. C. Martin, M. E. Miller, et al. (Eds.), Environmental law handbook (pp. 963–1004). Rockville: Government Institutes Inc.

    Google Scholar 

  • Bagheri, M., Verma, M., & Verter, V. (2014). Transport mode selection for toxic gases: Rail or road? Risk Analysis, 34(1), 168–186.

    Google Scholar 

  • Bakkensen, L. A., Fox-Lent, C., Read, L. K., et al. (2016). Validating resilience and vulnerability indices in the context of natural disasters. Risk Analysis, 37(5), 982–1004.

    Google Scholar 

  • Banerjee, S., Carlin, B. P., & Gelfand, A. E. (2004). Hierarchical modeling and analysis for spatial data. Boca Raton: Chapman & Hall.

    Google Scholar 

  • Beccari, B. (2016). A comparative analysis of disaster risk, vulnerability and resilience composite indicators. PLOS Currents Disasters. https://doi.org/10.1371/currents.dis.453df025e34b682e9737f95070f9b970

    Article  Google Scholar 

  • Bell, B. A., Ene, M., & Schoeneberger, J. (2013). A multilevel model primer using SAS PROC MIXED. In SAS global forum (pp. 0–19). Cary: SAS Institute Inc.

  • Benson, T., Chamberlin, J., & Rhinehart, I. (2005). An investigation of the spatial determinants of the local prevalence of poverty in rural Malawi. Food Policy, 30(5), 532–550.

    Google Scholar 

  • Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society. Series B (Methodological), 36(2), 192–236.

    Google Scholar 

  • Bin, O., Kruse, J. B., & Landry, C. E. (2008). Flood hazards, insurance rates, and amenities: Evidence from the coastal housing market. Journal of Risk and Insurance, 75(1), 63–82.

    Google Scholar 

  • Birkmann, J. (2007). Risk and vulnerability indicators at different scales: Applicability, usefulness and policy implications. Global Environment Change Part B, 7(1), 20–31.

    Google Scholar 

  • Birkmann, J., Cardona, O. D., Carreño, M. L., et al. (2013). Framing vulnerability, risk and societal responses: The MOVE framework. Natural Hazards, 67(2), 193–211.

    Google Scholar 

  • Birkmann, J., Kienberger, S., & Alexander, D. (2014). Assessment of vulnerability to natural hazards: A European perspective. Amsterdam: Elsevier.

    Google Scholar 

  • Brunsdon, C., & Comber, L. (2015). An introduction to R for spatial analysis and mapping. London: Sage.

    Google Scholar 

  • Burt, J. E., Barber, G. M., & Rigby, D. L. (2009). Elementary statistics for geographers. New York: Guilford Press.

    Google Scholar 

  • Burton, C., Rufat, S., & Tate, E. (2018). Social vulnerability. In S. Fuchs & T. Thaler (Eds.), Vulnerability and resilience to natural hazards (pp. 53–81). Cambridge: Cambridge University Press.

    Google Scholar 

  • Census USBot. (1994). Geographic areas reference manual. US Department of Commerce, Economics and Statistics Administration, Bureau of the Census.

  • Chakraborty, J. (2011). Revisiting Tobler’s first law of geography: spatial regression models for assessing environmental justice and health risk disparities. In J. Maantay & S. McLafferty (Eds.), Geospatial analysis of environmental health (pp. 337–356). Dordrecht: Springer.

    Google Scholar 

  • Chatterjee, S., & Simonoff, J. S. (2013). Handbook of regression analysis. New York: Wiley.

    Google Scholar 

  • Corrado, L., & Fingleton, B. (2011). Multilevel modelling with spatial effect. Glasgow: University of Strathclyde press.

    Google Scholar 

  • Cutter, S. L. (1996). Vulnerability to environmental hazards. Progress in Human Geography, 20(4), 529–539.

    Google Scholar 

  • Cutter, S. L. (2016a). The landscape of disaster resilience indicators in the USA. Natural Hazards, 80(2), 741–758.

    Google Scholar 

  • Cutter, S. L. (2016b). Resilience to what? Resilience for whom? The Geographical Journal, 182(2), 110–113.

    Google Scholar 

  • Cutter, S. (2003). The vulnerability of science and the science of vulnerability. Annals of the Association of American Geographers, 93(1), 1–12.

    Google Scholar 

  • Cutter, S. L., Boruff, B. J., & Shirley, W. L. (2003). Social vulnerability to environmental hazards. Social Science Quarterly, 84(2), 242–261.

    Google Scholar 

  • Cutter, S. L., Burton, C. G., & Emrich, C. T. (2010). Disaster resilience indicators for benchmarking baseline conditions. Journal of Homeland Security and Emergency Management, 7(1), 1–22.

    Google Scholar 

  • Cutter, S., & Emrich, C. (2006). Moral hazard, social catastrophe: The changing face of vulnerability along the Hurricane Coasts. The Annals of the American Academy of Political and Social Science, 604(1), 102–112.

    Google Scholar 

  • Cutter, S., Mitchell, J., & Scott, M. (2000). Revealing the vulnerability of people and places: A case study of Georgetown County, South Carolina. Annals of the Association of American Geographers, 90(4), 713–737.

    Google Scholar 

  • Darmofal, D. (2015). Spatial analysis for the social sciences. Cambridge: Cambridge University Press.

    Google Scholar 

  • Dezzani, R. J., & Al-Dousari, A. (2001). Spatial analysis in a Markov random field framework: The case of burning oil wells in Kuwait. Journal of Geographical Systems, 3(4), 387–409.

    Google Scholar 

  • Dillon, W. R., & Goldstein, M. (1984). Multivariate analysis: methods and applications. New York: Wiley.

    Google Scholar 

  • Dungan, J. L., Perry, J., Dale, M., et al. (2002). A balanced view of scale in spatial statistical analysis. Ecography, 25(2), 626–640.

    Google Scholar 

  • Eakin, H., & Luers, A. L. (2006). Assessing the vulnerability of social-environmental systems. Annual Review of Environment and Resources, 31(1), 365.

    Google Scholar 

  • Elliott, J. R., & Pais, J. (2006). Race, class, and Hurricane Katrina: Social differences in human responses to disaster. Social Science Research, 35(2), 295–321.

    Google Scholar 

  • Federal Emergency Management Agency (FEMA). (2011). National disaster recovery frameworkStrengthening disaster recovery for the nation, Washington, DC.

  • Fekete, A. (2012). Spatial disaster vulnerability and risk assessments: challenges in their quality and acceptance. Natural Hazards, 61(3), 1161–1178.

    Google Scholar 

  • Fekete, A., Damm, M., & Birkmann, J. (2010). Scales as a challenge for vulnerability assessment. Natural Hazards, 55(3), 729–747.

    Google Scholar 

  • Fellmann, T. (2012). The assessment of climate change-related vulnerability in the agricultural sector: Reviewing conceptual frameworks. In Meybeck, A., Lankoski, J., Redfern, S., Azzu, A., and Gitz, V. (Eds.), Building resilience for adaptation to climate change in the agriculture sector (pp.37–62). Proceedings of a Joint FAO/OECD Workshop, Rome, Italy, 23–24 April 2012. Food and Agriculture Organization of the United Nations (FAO).

  • Finch, C., Emrich, C. T., & Cutter, S. L. (2010). Disaster disparities and differential recovery in New Orleans. Population and Environment, 31(4), 179–202.

    Google Scholar 

  • Finley, A. O. (2011). Comparing spatially-varying coefficients models for analysis of ecological data with non-stationary and anisotropic residual dependence. Methods in Ecology and Evolution, 2(2), 143–154.

    Google Scholar 

  • Flanagan, B. E., Gregory, E. W., Hallisey, E. J., et al. (2011). A social vulnerability index for disaster management. Journal of Homeland Security and Emergency Management, 8(1), 1–22.

    Google Scholar 

  • Fothergill, A., Maestas, E. G. M., & Darlington, J. D. (1999). Race, ethnicity, and disasters in the United States: A review of the literature. Disasters, 23, 156.

    Google Scholar 

  • Fothergill, A., & Peek, L. A. (2004). Poverty and disasters in the United States: A review of recent sociological findings. Natural Hazards, 32(1), 89–110.

    Google Scholar 

  • Fotheringham, A. S., Brundson, C., & Charlton, M. (2002). Geographically weighted regression: the analysis of spatially varying relationships. Hoboken, NJ: Wiley.

    Google Scholar 

  • Fotheringham, A. S., & Oshan, T. M. (2016). Geographically weighted regression and multicollinearity: Dispelling the myth. Journal of Geographical Systems, 18(4), 303–329.

    Google Scholar 

  • Fotheringham, A. S., & Rogerson, P. (2009). The SAGE handbook of spatial analysis. London: Sage Publications.

    Google Scholar 

  • Frazier, T. G., Thompson, C. M., & Dezzani, R. J. (2013a). Development of a spatially explicit vulnerability-resilience model for community level hazard mitigation enhancement. In C. A. Brebbia (Ed.), Disaster management and human health risk III: Reducing risk, improving outcomes (pp. 13–24). Southampton: WIT Press.

    Google Scholar 

  • Frazier, T. G., Thompson, C. M., & Dezzani, R. J. (2014). A framework for the development of the SERV model: A spatially explicit resilience-vulnerability model. Applied Geography, 51(3), 158–172.

    Google Scholar 

  • Frazier, T. G., Walker, M. H., Kumari, A., et al. (2013b). Opportunities and constraints to hazard mitigation planning. Applied Geography, 40(1), 52–60.

    Google Scholar 

  • Fuchs, S. B. J. G. T. (2012). Vulnerability assessment in natural hazard and risk analysis: Current approaches and future challenges. Natural Hazards, 64(4), 1969–1975.

    Google Scholar 

  • Füssel, H. M. (2007). Vulnerability: A generally applicable conceptual framework for climate change research. Global Environmental Change, 17(2), 155–167.

    Google Scholar 

  • Gelman, A. H. J. (2007). Data analysis using regression and multilevel/hierarchical models. Cambridge, NY: Cambridge University Press.

    Google Scholar 

  • Goldman, M., & Schurman, R. A. (2000). Closing the “Great Divide”: New social theory on society and nature. Annual Review of Sociology, 26(1), 563–584.

    Google Scholar 

  • Gotway, C. A., & Young, L. J. (2002). Combining incompatible spatial data. Journal of the American Statistical Association, 97(458), 632–648.

    Google Scholar 

  • Griffith, D. A. (2003). Spatial autocorrelation and spatial filtering. New York: Springer.

    Google Scholar 

  • Haining, R. P. (2003). Spatial data analysis: Theory and practice. Cambridge: Cambridge University Press.

    Google Scholar 

  • Howe, P. D. (2011). Hurricane preparedness as anticipatory adaptation: A case study of community businesses. Global Environmental Change, 21(2), 711–720.

    Google Scholar 

  • Howitt, R. (2003). Scale. In J. Agnew, K. Mitchell & G. O’Tuathail (Eds.), A companion to political geography (pp. 138–157). Oxford: Blackwell.

  • Hsu, P. H., & Su, W. R. (2012). Hazard hotspots analysis from geospatial database using geospatial data mining technology. IEEE International Geoscience and Remote Sensing Symposium, 2012, 962–965.

    Google Scholar 

  • Hufschmidt, G. (2011). A comparative analysis of several vulnerability concepts. Natural Hazards, 58(2), 621–643.

    Google Scholar 

  • Jankowska, M. M., Weeks, J. R., & Engstrom, R. (2011). Do the most vulnerable people live in the worst slums? A spatial analysis of Accra, Ghana. Annals of GIS, 17(4), 221–235.

    Google Scholar 

  • Johnston, R. J. (1978). Multivariate statistical analysis in geography. London: Longman.

    Google Scholar 

  • Jones, B., & Andrey, J. (2007). Vulnerability index construction: Methodological choices and their influence on identifying vulnerable neighbourhoods. International Journal of Emergency Management, 4(2), 269–295.

    Google Scholar 

  • Keller, E. A., DeVecchio, D. E., & Blodgett, R. H. (2014). Natural hazards: Earth’s processes as hazards, disasters, and catastrophes. Boston: Pearson.

    Google Scholar 

  • Kim, H., Marcouiller, D. W., & Woosnam, K. M. (2018). Rescaling social dynamics in climate change: The implications of cumulative exposure, climate justice, and community resilience. Geoforum, 96(1), 129–140.

    Google Scholar 

  • Krellenberg, K., Welz, J., Link, F., et al. (2016). Urban vulnerability and the contribution of socio-environmental fragmentation theoretical and methodological pathways. Progress in Human Geography, 41(4), 408–431.

    Google Scholar 

  • Lawson, A. B. (2013). Bayesian disease mapping: Hierarchical modeling in spatial epidemiology. Boca Raton: Chapman & Hall.

    Google Scholar 

  • Leitner, H., & Miller, B. (2007). Scale and the limitations of ontological debate: A commentary on Marston, Jones, and Woodward. Transactions of the Institute of British Geographers, 32(1), 116–125.

    Google Scholar 

  • Lichstein, J. W., Simons, T. R., Shriner, S. A., et al. (2002). Spatial autocorrelation and autoregressive models in ecology. Ecological Monographs, 72(3), 445–463.

    Google Scholar 

  • Lu, B., Harris, P., Charlton, M., et al. (2013). The GWmodel R package: Further topics for exploring spatial heterogeneity using geographically weighted models. arXiv preprint arXiv:1312.2753.

  • MacKinnon, D. (2011). Reconstructing scale: Towards a new scalar politics. Progress in Human Geography, 35(1), 21–36.

    Google Scholar 

  • Marston, S. A., Jones, J. P., & Woodward, K. (2005). Human geography without scale. Transactions of the Institute of British Geographers, 30(4), 416–432.

    Google Scholar 

  • Martín, Y., Rodrigues Mimbrero, M., & Zúñiga-Antón, M. (2017). Community vulnerability to hazards: Introducing local expert knowledge into the equation. Natural Hazards, 89(1), 367–386.

    Google Scholar 

  • Mentzafou, A., Markogianni, V., & Dimitriou, E. (2016). The use of geospatial technologies in flood hazard mapping and assessment: Case study from River Evros. Pure and Applied Geophysics, 174(2), 1–22.

    Google Scholar 

  • Merz, M., Hiete, M., Comes, T., et al. (2013). A composite indicator model to assess natural disaster risks in industry on a spatial level. Journal of Risk Research, 16(9), 1077–1099.

    Google Scholar 

  • Miller, F., Osbahr, H., Boyd, E., et al. (2010). Resilience and vulnerability: Complementary or conflicting concepts? Ecology and Society, 15(3), 1–25.

    Google Scholar 

  • Morrow, B. H. (1999). Identifying and mapping community vulnerability. Disasters, 23(1), 1–18.

    Google Scholar 

  • Morrow, B. (2008). Community resilience: A social justice perspective. TN: CARRI Research Report Oak Ridge.

    Google Scholar 

  • Mustafa, D., Ahmed, S., Saroch, E., et al. (2011). Pinning down vulnerability: From narratives to numbers. Disasters, 35(5), 62–86.

    Google Scholar 

  • Nakaya, T., Fotheringham, A., Charlton, M., et al. (2014). Semiparametric geographically weighted generalised linear modelling: The concept and implementation using GWR4. In C. Brunsdon & A. Singleton (Eds.), Geocomputation. A practical primer. London: Sage.

    Google Scholar 

  • O’Connell, A. A., & McCoach, D. B. (2008). Multilevel modeling of educational data. Charlotte, NC: IAP.

    Google Scholar 

  • Oliver-Smith, A. (1996). Anthropological research on hazards and disasters. Annual Review of Anthropology, 25(1), 303–328.

    Google Scholar 

  • Oliver-Smith, A., Cutter, S., Warner, K., et al. (2012). Addressing loss and damage in the context of social vulnerability and resilience. Available at: http://nbn-resolving.de/urn:nbn:de:101:1-201301093162.

  • Openshaw, S. (1984). The modifiable areal unit problem. Norwich: Geo.

    Google Scholar 

  • Ostrom, E. (2009). A general framework for analyzing sustainability of social-ecological systems. Science, 325(5939), 419–422.

    Google Scholar 

  • O’Sullivan, D., & Unwin, D. (2010). Geographic information analysis. Available at: http://www.books24x7.com/marc.asp?bookid=35218.

  • Peacock, W. G., Brody, S. D., Seitz, W. A., et al. (2010). Advancing resilience of coastal localities: Developing, implementing, and sustaining the use of coastal resilience indicators: A final report. Texas: Hazard Reduction and Recovery Center.

    Google Scholar 

  • Peduzzi, P., Dao, H., Herold, C., et al. (2009). Assessing global exposure and vulnerability towards natural hazards: the Disaster Risk Index. Natural hazards and earth system sciences, 9(4), 1149–1159.

    Google Scholar 

  • Poudyal, N. C., Johnson-Gaither, C., Goodrick, S., et al. (2012). Locating spatial variation in the association between wildland fire risk and social vulnerability across six southern states. Environmental Management, 49(3), 623–635.

    Google Scholar 

  • Rose, A. (2007). Economic resilience to natural and man-made disasters: Multidisciplinary origins and contextual dimensions. Environmental Hazards, 7(4), 383–398.

    Google Scholar 

  • Sain, S. R., & Cressie, N. (2007). A spatial model for multivariate lattice data. Journal of Econometrics, 140(1), 226–259.

    Google Scholar 

  • Sainani, K. L. (2014). Explanatory versus predictive modeling. PM&R, 6(9), 841–844.

    Google Scholar 

  • Saldaña-Zorrilla, S. O., & Sandberg, K. (2009). Impact of climate-related disasters on human migration in Mexico: A spatial model. Climatic Change, 96(1), 97–118.

    Google Scholar 

  • Salvati, L., Mancini, A., Bajocco, S., et al. (2011). Socioeconomic development and vulnerability to land degradation in Italy. Regional Environmental Change, 11(4), 767–777.

    Google Scholar 

  • Sarasota County. (2015). Post-disaster redevelopment plan. Sarasota County, Sarasota. Retrieved from: https://www.scgov.net/Home/ShowDocument?id=34542.

  • Sarasota County Department of Planning. (2016). Sarasota County comprehensive plan: A planning tool for the future of Sarasota County. Sarasota County: Planning & Development Services.

    Google Scholar 

  • Schmidtlein, M. C., Deutsch, R. C., Piegorsch, W. W., et al. (2008). A sensitivity analysis of the Social Vulnerability Index. Risk Analysis, 28(4), 1099–1114.

    Google Scholar 

  • Schwab, A. K., Sandler, D., & Brower, D. J. (2016). Hazard mitigation and preparedness: An introductory text for emergency management and planning professionals. Boca Raton: CRC Press.

    Google Scholar 

  • Scott, J. (2011). Methods of mapping SLOSH for the HES Program. U.S. Army Corps of Engineers Baltimore District, Baltimore, MA. Presentation at NOAA Operational Storm Surge Inundation Mapping Workshop Resources, Bay St. Louis, MS. Retrieved from: https://www.northerngulfinstitute.org/impact/resources/inundationWorkshop/scott.pdf

  • Sharifi, A. (2016). A critical review of selected tools for assessing community resilience. Ecological Indicators, 69(1), 629–647.

    Google Scholar 

  • Sherrieb, K., Norris, F. H., & Galea, S. (2010). Measuring capacities for community resilience. Social Indicators Research, 99(2), 227–247.

    Google Scholar 

  • Shmueli, G. (2010). To explain or to predict? Statistical Science, 25(3), 289–310.

    Google Scholar 

  • Subramanian, S. V., Duncan, C., & Jones, K. (2001). Multilevel perspectives on modeling census data. Environment and Planning A, 33(3), 399–417.

    Google Scholar 

  • Tanner, T., Lewis, D., Wrathall, D., et al. (2014). Livelihood resilience in the face of climate change. Nature Climate Change, 5(1), 23.

    Google Scholar 

  • Tate, E. (2012). Social vulnerability indices: A comparative assessment using uncertainty and sensitivity analysis. Natural Hazards, 63(2), 325–347.

    Google Scholar 

  • Tate, E. (2013). Uncertainty analysis for a Social Vulnerability Index. Annals of the Association of American Geographers, 103(3), 526–543.

    Google Scholar 

  • Thompson, C. M., & Frazier, T. G. (2014). Deterministic and probabilistic flood modeling for contemporary and future coastal and inland precipitation inundation. Applied Geography, 50(1), 1–14.

    Google Scholar 

  • Tiefelsdorf, M., & Griffith, D. A. (2007). Semiparametric filtering of spatial autocorrelation: The eigenvector approach. Environment and Planning A, 39(5), 1193–1221.

    Google Scholar 

  • Turner, B. L., Kasperson, R. E., Matson, P. A., et al. (2003). A framework for vulnerability analysis in sustainability science. Proceedings of the National Academy of Sciences of the United States of America, 100(14), 8074–8079.

    Google Scholar 

  • U.S. Census Bureau. (2010). State and county Quickfacts. Sarasota County, FL.

  • Ueland, J., & Warf, B. (2006). Racialized topographies: Altitude and race in southern cities. Geographical Review, 96(1), 50–78.

    Google Scholar 

  • Ugarte, M., Ibáñez, B., & Militino, A. (2005). Detection of spatial variation in risk when using CAR models for smoothing relative risks. Stochastic Environmental Research and Risk Assessment, 19(1), 33–40.

    Google Scholar 

  • United Nations Office for Disaster Risk Reduction (UNISDR). (2017). Words into action guidelines: National disaster risk assessment. Ed. Safaie, S., United Nations Office for Disaster Risk Reduction (UNISDR), Retrieved from: https://www.unisdr.org/we/inform/publications/52828.

  • Wang, C., & Yarnal, B. (2012). The vulnerability of the elderly to hurricane hazards in Sarasota, Florida. Natural Hazards, 63(2), 349–373.

    Google Scholar 

  • Wheeler, D. C., & Calder, C. A. (2007). An assessment of coefficient accuracy in linear regression models with spatially varying coefficients. Journal of Geographical Systems, 9(2), 145–166.

    Google Scholar 

  • Wheeler, D., & Tiefelsdorf, M. (2005). Multicollinearity and correlation among local regression coefficients in geographically weighted regression. Journal of Geographical Systems, 7(2), 161–187.

    Google Scholar 

  • White, G. F. (1945). Human adjustment to floods: A geographical approach to the flood problem in the United States. Chicago, IL: University of Chicago.

    Google Scholar 

  • Wood, N. J., Burton, C. G., & Cutter, S. L. (2010). Community variations in social vulnerability to Cascadia-related tsunamis in the U.S. Pacific Northwest. Natural Hazards, 52(2), 369–389.

    Google Scholar 

Download references

Acknowledgements

This research was funded by the National Science Foundation under Grant No. GSS 1434315.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Courtney M. Thompson.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thompson, C.M., Dezzani, R.J. & Radil, S.M. Modeling multiscalar influences on natural hazards vulnerability: a proof of concept using coastal hazards in Sarasota County, Florida. GeoJournal 86, 507–528 (2021). https://doi.org/10.1007/s10708-019-10070-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10708-019-10070-w

Keywords

Navigation