Skip to main content
Log in

On Bound States in Quantum Field Theory

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, a new method to describe the energy spectrums of bound states in Quantum Field Theory is presented. We point out that the fundamental field and its dual soliton combine together to form bound states and the soliton corresponds to the ghost particle in our regularization scheme which takes advantage of dimensional regularization and Pauli-Villars regularization. Based on this point of view, we discuss the bound states of massive Thirring model, the positronium (e+e) in QED and the vector meson in QCD. We also give a new way to obtain the mass of soliton (quantum soliton) from the stationary condition (gap equation). Our results agree with experimental data to high precision. We argue that the hypothetic X17 particle in decay of 8Be and 4He is a soliton. For vector meson, we find the squared masses of ρ resonances are \(m^{2}(n)\sim (an^{1/3}-b)^{2}\) (nN) which coincide well with experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Witten, E.: . Commun. Math. Phys. 252, 189 (2004). arXiv:0312171[hep-th]; Britto, R., Cachazo, F., and Feng, B.: Nucl. Phys. B 715, 499 (2005). arXiv:0412308[hep-th]; Britto, R., Cachazo, F., Feng, B. and Witten, E.: Phys. Rev. Lett. 94, 181602 (2005). arXiv:0501052[hep-th]; Feng, B. and Liu, C. Y.: JHEP 1007, 093 (2010). arXiv:1004.1282[hep-th]; Jia, Y., Huang, R. and Liu, C. Y.: Phys. Rev. D 82, 065001 (2010). arXiv:1005.1821[hep-th]

    Article  ADS  Google Scholar 

  2. Salpeter, E.E., Bethe, H.A.: . Phys. Rev. 84, 1232 (1951). Nakanishi, N.: Prog. Theor. Phys. Suppl. 43, 1 (1969); Efimov, G. V.: Few Body Syst. 33, 199 (2003). arXiv:0304194[hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  3. Wilson, K.G.: . Phys. Rev. D 10, 2445 (1974). Gupta, R.: arXiv:9807028[hep-lat]

    Article  ADS  Google Scholar 

  4. Källén, G.: . Helv. Phys. Acta 25(4), 417 (1952). Lehmann, H.: Nuovo Cim. 11, 342–357 (1954)

    Google Scholar 

  5. Dirac, P.A.M.: . Proc. Roy. Soc. Lond. A 133(821), 60 (1931)

    Article  ADS  Google Scholar 

  6. ’t Hooft, G.: . Nucl. Phys. B 79, 276 (1974). Polyakov, A.M.: JETP Lett. 20, 194 (1974) [Pisma zh. Eksp. Teor. Fiz. 20, 430 (1974)]; Kirkman, T.W. and Zachos, C.K.: Phys. Rev. D 24, 999 (1981)

    Article  ADS  Google Scholar 

  7. Prasad, M., Sommerfield, C.M.: . Phys. Rev. Lett. 35, 760–762 (1975). Bogomolny, E.: Sov. J. Nucl. Phys. 24, 449 (1976)

    Article  ADS  Google Scholar 

  8. Peskin, M.E., Schroeder, D.V.: An Introduction to Quantum Field Theory. Westview Press (1995)

  9. Pauli, W., Villars, F.: . Rev. Mod. Phys. 21, 434 (1949)

    Article  ADS  Google Scholar 

  10. ’t Hooft, G., Veltman, M.: . Nucl. Phys. B 44, 189–213 (1972)

    Article  ADS  Google Scholar 

  11. Liu, C.-Y.: Note on anomalies in field theories. http://chinaxiv.org/abs/202008.00076(2020)

  12. Adler, S.L.: . Phys. Rev. 177, 2426–2438 (1969)

    Article  ADS  Google Scholar 

  13. Bell, J.S., Jackiw, R.: . Nuovo Cim. A 60, 47–61 (1969)

    Article  ADS  Google Scholar 

  14. Thirring, W.E.: . Annals Phys. 3, 91 (1958)

    Article  ADS  Google Scholar 

  15. Coleman, S.R.: . Phys. Rev. D 11, 2088 (1975)

    Article  ADS  Google Scholar 

  16. Dashen, R.F., Hasslacher, B., Neveu, A.: . Phys. Rev. D 10, 4114 (1974). Dashen, R.F., Hasslacher, B. and Neveu, A.: Phys. Rev. D 11, 3424 (1975); Weinberg, E.J.: Classical solutions in quantum field theory : Solitons and Instantons in High Energy Physics. Cambridge University Press (2012)

    Article  ADS  Google Scholar 

  17. Aoyama, S.: . Prog. Theor. Phys. 59, 1723 (1978)

    Article  ADS  Google Scholar 

  18. Orfanidis, S.J., Wang, R.: . Phys. Lett. B 57, 281–283 (1975). Orfanidis, S.J.: Phys. Rev. D 14, 472 (1976); Kaup, D. and Newell, A.: Lett. Nuovo Cim. 20, 325–331 (1977); Kuznetsov, E. and Mikhailov, A.: Teor. Mat. Fiz. 30, 303–314 (1977); Zakharov, V. and Mikhailov, A.: Sov. Phys. JETP 47, 1017–1027 (1978); Martinez Alonso, L.: Phys. Rev. D 30, 2595–2601 (1984); Korepin, V., Bogoliubov, N. and Izergin, A.: Quantum Inverse Scattering Method and Correlation Functions. Cambridge University Press (1996)

    Article  ADS  Google Scholar 

  19. Schwinger, J.S.: . Phys. Rev. 82, 664 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  20. Itzykson, C., Zuber, J.B.: Quantum Field Theory. Mcgraw-hill, New York (1980)

    MATH  Google Scholar 

  21. Gross, D.J., Neveu, A.: . Phys. Rev. D 10, 3235 (1974)

    Article  ADS  Google Scholar 

  22. Dashen, R.F., Hasslacher, B., Neveu, A.: . Phys. Rev. D 12, 2443 (1975). Feinberg, J.: Phys. Rev. D 51, 4503–4511 (1995). arXiv:9408120[hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  23. Feinberg, J., Zee, A.: . Phys. Lett. B 411, 134–140 (1997). arXiv:9610009[hep-th]; Thies, M. and Urlichs, K.: Phys. Rev. D 71, 105008 (2005). arXiv:0502210[hep-th]; Feinberg, J. and Hillel, S.: Phys. Rev. D 72, 105009 (2005). arXiv:0509019[hep-th]

    Article  ADS  Google Scholar 

  24. Davies, D.: . arXiv:1907.10616[hep-th]; Delfino, G., Selke, W. and Squarcini, A.: Phys. Rev. Lett. 122(5), 050602 (2019). arXiv:1808.09276[cond-mat.stat-mech] (2019)

  25. Krasznahorkay, A.J., Csatlós, M., Csige, L., Gácsi, Z., Gulyás, J., Hunyadi, M., Ketel, T.J., Krasznahorkay, A., Kuti, I. , Nyakó, M.B., et al.: . Phys. Rev. Lett. 116(4), 042501 (2016). arXiv:1504.01527[nucl-ex]; Feng, J. L., Fornal, B., Galon, I., Gardner, S., Smolinsky, J., Tait, T. M. P. and Tanedo, P.: Phys. Rev. Lett. 117(7), 071803 (2016). arXiv:1604.07411[hep-ph]; Krasznahorkay, A. J., Csatlós, M., Csige, L., Gulyás, J., Koszta, M., Szihalmi, B., Timár, J., Firak, D. S., Nagy, Á. and Sas, N. J., et al.: arXiv:1910.10459[nucl-ex]

    Article  ADS  Google Scholar 

  26. Montonen, C., Olive, D.I.: . Phys. Lett. 72B, 117 (1977). Seiberg, N. and Witten, E.: Nucl. Phys. B 426, 19 (1994) Erratum: [Nucl. Phys. B 430, 485 (1994)]. arXiv:9407087[hep-th]; Chen, B. and He, W.: Phys. Rev. D 74, 126008 (2006). arXiv:0607024[hep-th]; Liu, C. Y. and Qin, L.: JHEP 1510, 102 (2015). arXiv:1505.06399[hep-th]; Faraggi, A., Pando Zayas, L. A., Silva, G. A. and Trancanelli, D.: JHEP 1604, 053 (2016). arXiv:1601.04708[hep-th]

    Article  ADS  Google Scholar 

  27. Nielsen, H.B., Olesen, P.: . Nucl. Phys. B 160, 380 (1979). Kogut, J.B. and Susskind, L.: Phys. Rev. D 9, 3391 (1974); ’t Hooft, G.: Nucl. Phys. B 138, 1 (1978); Mandelstam, S.: Phys. Rept. 23, 307 (1976)

    Article  ADS  Google Scholar 

  28. Eidelman, S., et al.: Particle data group. Phys. Lett. B 592(1-4), 1 (2004). Zhang, P.: Phys. Rev. D 82, 094013 (2010). arXiv:1007.2163[hep-ph]

    Article  ADS  Google Scholar 

  29. Collins, P.D.B.: An Introduction to Regge Theory and High-Energy Physics. Cambridge University Press (1977)

Download references

Acknowledgments

This work is supported by Chinese Universities Scientific Fund Grant No. 2452018158. We would like to thank Dr. Wei He, Youwei Li and Suzhi Wu for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changyong Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C. On Bound States in Quantum Field Theory. Int J Theor Phys 60, 1008–1024 (2021). https://doi.org/10.1007/s10773-021-04723-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04723-1

Keywords

Navigation