Skip to main content
Log in

CAG repeat instability in embryonic stem cells and derivative spermatogenic cells of transgenic Huntington’s disease monkey

  • Reproductive Physiology and Disease
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

The expansion of CAG (glutamine; Q) trinucleotide repeats (TNRs) predominantly occurs through male lineage in Huntington’s disease (HD). As a result, offspring will have larger CAG repeats compared to their fathers, which causes an earlier onset of the disease called genetic anticipation. This study aims to develop a novel in vitro model to replicate CAG repeat instability in early spermatogenesis and demonstrate the biological process of genetic anticipation by using the HD stem cell model for the first time.

Methods

HD rhesus monkey embryonic stem cells (rESCs) were cultured in vitro for an extended period. Male rESCs were used to derive spermatogenic cells in vitro with a 10-day differentiation. The assessment of CAG repeat instability was performed by GeneScan and curve fit analysis.

Results

Spermatogenic cells derived from rESCs exhibit progressive expansion of CAG repeats with high daily expansion rates compared to the extended culture of rESCs. The expansion of CAG repeats is cell type–specific and size-dependent.

Conclusions

Here, we report a novel stem cell model that replicates genome instability and CAG repeat expansion in in vitro derived HD monkey spermatogenic cells. The in vitro spermatogenic cell model opens a new opportunity for studying TNR instability and the underlying mechanism of genetic anticipation, not only in HD but also in other TNR diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

N/A

Code availability

N/A

References

  1. Bates GP, Dorsey R, Gusella JF, Hayden MR, Kay C, Leavitt BR, et al. Huntington disease. Nat Rev Dis Primers. 2015;1:15005.

    Article  PubMed  Google Scholar 

  2. Ghosh R, Tabrizi SJ. Clinical features of Huntington’s disease. Adv Exp Med Biol. 2018;1049:1–28.

    Article  CAS  PubMed  Google Scholar 

  3. Ross CA, Aylward EH, Wild EJ, Langbehn DR, Long JD, Warner JH, et al. Huntington disease: natural history, biomarkers and prospects for therapeutics. Nat Rev Neurol. 2014;10(4):204–16.

    Article  CAS  PubMed  Google Scholar 

  4. Aronin N, DiFiglia M. Huntingtin-lowering strategies in Huntington’s disease: antisense oligonucleotides, small RNAs, and gene editing. Mov Disord. 2014;29(11):1455–61.

    Article  CAS  PubMed  Google Scholar 

  5. Didiot MC, Hall LM, Coles AH, Haraszti RA, Godinho BM, Chase K, et al. Exosome-mediated delivery of hydrophobically modified siRNA for Huntingtin mRNA silencing. Mol Ther. 2016;24(10):1836–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gagnon KT, Pendergraff HM, Deleavey GF, Swayze EE, Potier P, Randolph J, et al. Allele-selective inhibition of mutant huntingtin expression with antisense oligonucleotides targeting the expanded CAG repeat. Biochemistry. 2010;49(47):10166–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Johnson E, Chase K, McGowan S, Mondo E, Pfister E, Mick E, et al. Safety of striatal infusion of siRNA in a transgenic Huntington’s disease mouse model. J Huntingtons Dis. 2015;4(3):219–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Skotte NH, Southwell AL, Ostergaard ME, Carroll JB, Warby SC, Doty CN, et al. Allele-specific suppression of mutant huntingtin using antisense oligonucleotides: providing a therapeutic option for all Huntington disease patients. PLoS One. 2014;9(9):e107434.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yang S, Chang R, Yang H, Zhao T, Hong Y, Kong HE, et al. CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease. J Clin Invest. 2017;127(7):2719–24.

    Article  PubMed  PubMed Central  Google Scholar 

  10. McColgan P, Tabrizi SJ. Huntington’s disease: a clinical review. Eur J Neurol. 2018;25(1):24–34.

    Article  CAS  PubMed  Google Scholar 

  11. Rawlins MD, Wexler NS, Wexler AR, Tabrizi SJ, Douglas I, Evans SJ, et al. The prevalence of Huntington’s disease. Neuroepidemiology. 2016;46(2):144–53.

    Article  PubMed  Google Scholar 

  12. Cannella M, Maglione V, Martino T, Ragona G, Frati L, Li GM, et al. DNA instability in replicating Huntington’s disease lymphoblasts. BMC Med Genet. 2009;10:11.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Clever F, Cho IK, Yang J, Chan AWS. Progressive polyglutamine repeat expansion in peripheral blood cells and sperm of transgenic Huntington’s disease monkeys. J Huntingtons Dis. 2019;8(4):443–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hung CL, Maiuri T, Bowie LE, Gotesman R, Son S, Falcone M, et al. A patient-derived cellular model for Huntington’s disease reveals phenotypes at clinically relevant CAG lengths. Mol Biol Cell. 2018;29(23):2809–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jacquet L, Neueder A, Foldes G, Karagiannis P, Hobbs C, Jolinon N, et al. Three Huntington’s disease specific mutation-carrying human embryonic stem cell lines have stable number of CAG repeats upon in vitro differentiation into cardiomyocytes. PLoS One. 2015;10(5):e0126860.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Manley K, Pugh J, Messer A. Instability of the CAG repeat in immortalized fibroblast cell cultures from Huntington’s disease transgenic mice. Brain Res. 1999;835(1):74–9.

    Article  CAS  PubMed  Google Scholar 

  17. McMurray CT. Mechanisms of trinucleotide repeat instability during human development. Nat Rev Genet. 2010;11(11):786–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mollica PA, Reid JA, Ogle RC, Sachs PC, Bruno RD. DNA Methylation leads to DNA repair gene down-regulation and trinucleotide repeat expansion in patient-derived Huntington disease cells. Am J Pathol. 2016;186(7):1967–76.

    Article  CAS  PubMed  Google Scholar 

  19. Mollica PA, Zamponi M, Reid JA, Sharma DK, White AE, Ogle RC, et al. Epigenetic alterations mediate iPSC-induced normalization of DNA repair gene expression and TNR stability in Huntington's disease cells. J Cell Sci. 2018;131(13).

  20. Simard O, Gregoire MC, Arguin M, Brazeau MA, Leduc F, Marois I, et al. Instability of trinucleotidic repeats during chromatin remodeling in spermatids. Hum Mutat. 2014;35(11):1280–4.

    CAS  PubMed  Google Scholar 

  21. Usdin K, House NC, Freudenreich CH. Repeat instability during DNA repair: insights from model systems. Crit Rev Biochem Mol Biol. 2015;50(2):142–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yoon SR, Dubeau L, de Young M, Wexler NS, Arnheim N. Huntington disease expansion mutations in humans can occur before meiosis is completed. Proc Natl Acad Sci U S A. 2003;100(15):8834–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Heitz D, Devys D, Imbert G, Kretz C, Mandel JL. Inheritance of the fragile X syndrome: size of the fragile X premutation is a major determinant of the transition to full mutation. J Med Genet. 1992;29(11):794–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sherman SL, Jacobs PA, Morton NE, Froster-Iskenius U, Howard-Peebles PN, Nielsen KB, et al. Further segregation analysis of the fragile X syndrome with special reference to transmitting males. Hum Genet. 1985;69(4):289–99.

    Article  CAS  PubMed  Google Scholar 

  25. Jones L, Houlden H, Tabrizi SJ. DNA repair in the trinucleotide repeat disorders. Lancet Neurol. 2017;16(1):88–96.

    Article  CAS  PubMed  Google Scholar 

  26. Murmann AE, Yu J, Opal P, Peter ME. Trinucleotide repeat expansion diseases, RNAi, and cancer. Trends Cancer. 2018;4(10):684–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Orr HT, Zoghbi HY. Trinucleotide repeat disorders. Annu Rev Neurosci. 2007;30:575–621.

    Article  CAS  PubMed  Google Scholar 

  28. Kovtun IV, McMurray CT. Trinucleotide expansion in haploid germ cells by gap repair. Nat Genet. 2001;27(4):407–11.

    Article  CAS  PubMed  Google Scholar 

  29. Kraus-Perrotta C, Lagalwar S. Expansion, mosaicism and interruption: mechanisms of the CAG repeat mutation in spinocerebellar ataxia type 1. Cerebellum Ataxias. 2016;3:20.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Massey T, McAllister B, Jones L. Methods for assessing DNA repair and repeat expansion in Huntington’s disease. Methods Mol Biol. 1780;2018:483–95.

    Google Scholar 

  31. Mollersen L, Rowe AD, Larsen E, Rognes T, Klungland A. Continuous and periodic expansion of CAG repeats in Huntington’s disease R6/1 mice. PLoS Genet. 2010;6(12):e1001242.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Snell RG, MacMillan JC, Cheadle JP, Fenton I, Lazarou LP, Davies P, et al. Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington's disease. Nat Genet. 1993;4(4):393–7.

    Article  CAS  PubMed  Google Scholar 

  33. Duyao M, Ambrose C, Myers R, Novelletto A, Persichetti F, Frontali M, et al. Trinucleotide repeat length instability and age of onset in Huntington's disease. Nat Genet. 1993;4(4):387–92.

    Article  CAS  PubMed  Google Scholar 

  34. Kremer B, Almqvist E, Theilmann J, Spence N, Telenius H, Goldberg YP, et al. Sex-dependent mechanisms for expansions and contractions of the CAG repeat on affected Huntington disease chromosomes. Am J Hum Genet. 1995;57(2):343–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. MacDonald ME, Barnes G, Srinidhi J, Duyao MP, Ambrose CM, Myers RH, et al. Gametic but not somatic instability of CAG repeat length in Huntington’s disease. J Med Genet. 1993;30(12):982–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Myers RH, MacDonald ME, Koroshetz WJ, Duyao MP, Ambrose CM, Taylor SA, et al. De novo expansion of a (CAG)n repeat in sporadic Huntington’s disease. Nat Genet. 1993;5(2):168–73.

    Article  CAS  PubMed  Google Scholar 

  37. Ranen NG, Stine OC, Abbott MH, Sherr M, Codori AM, Franz ML, et al. Anticipation and instability of IT-15 (CAG)n repeats in parent-offspring pairs with Huntington disease. Am J Hum Genet. 1995;57(3):593–602.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Telenius H, Almqvist E, Kremer B, Spence N, Squitieri F, Nichol K, et al. Somatic mosaicism in sperm is associated with intergenerational (CAG)n changes in Huntington disease. Hum Mol Genet. 1995;4(2):189–95.

    Article  CAS  PubMed  Google Scholar 

  39. Ehmcke J, Wistuba J, Schlatt S. Spermatogonial stem cells: questions, models and perspectives. Hum Reprod Update. 2006;12(3):275–82.

    Article  CAS  PubMed  Google Scholar 

  40. Fayomi AP, Orwig KE. Spermatogonial stem cells and spermatogenesis in mice, monkeys and men. Stem Cell Res. 2018;29:207–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. McCarrey JR. EPIGENETICS. The epigenome--a family affair. Science. 2015;350(6261):634–5.

    Article  CAS  PubMed  Google Scholar 

  42. McMurray CT, Kortun IV. Repair in haploid male germ cells occurs late in differentiation as chromatin is condensing. Chromosoma. 2003;111(8):505–8.

    Article  CAS  PubMed  Google Scholar 

  43. Neto JL, Lee JM, Afridi A, Gillis T, Guide JR, Dempsey S, et al. Genetic contributors to intergenerational CAG repeat instability in Huntington’s disease knock-in mice. Genetics. 2017;205(2):503–16.

    Article  PubMed  Google Scholar 

  44. Aziz NA, van Belzen MJ, Coops ID, Belfroid RD, Roos RA. Parent-of-origin differences of mutant HTT CAG repeat instability in Huntington’s disease. Eur J Med Genet. 2011;54(4):e413–8.

    Article  PubMed  Google Scholar 

  45. Norremolle A, Sorensen SA, Fenger K, Hasholt L. Correlation between magnitude of CAG repeat length alterations and length of the paternal repeat in paternally inherited Huntington's disease. Clin Genet. 1995;47(3):113–7.

    Article  CAS  PubMed  Google Scholar 

  46. Hermann BP, Cheng K, Singh A, Roa-De La Cruz L, Mutoji KN, Chen IC, et al. The mammalian spermatogenesis single-cell transcriptome, from spermatogonial stem cells to spermatids. Cell Rep. 2018;25(6):1650–67.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Luetjens CM, Weinbauer GF, Wistuba J. Primate spermatogenesis: new insights into comparative testicular organisation, spermatogenic efficiency and endocrine control. Biol Rev Camb Philos Soc. 2005;80(3):475–88.

    Article  PubMed  Google Scholar 

  48. Putkhao K, Kocerha J, Cho IK, Yang J, Parnpai R, Chan AW. Pathogenic cellular phenotypes are germline transmissible in a transgenic primate model of Huntington’s disease. Stem Cells Dev. 2013;22(8):1198–205.

    Article  CAS  PubMed  Google Scholar 

  49. Yang SH, Cheng PH, Banta H, Piotrowska-Nitsche K, Yang JJ, Cheng EC, et al. Towards a transgenic model of Huntington’s disease in a non-human primate. Nature. 2008;453(7197):921–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Easley CA, Phillips BT, McGuire MM, Barringer JM, Valli H, Hermann BP, et al. Direct differentiation of human pluripotent stem cells into haploid spermatogenic cells. Cell Rep. 2012;2(3):440–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gazy I, Hayward B, Potapova S, Zhao X, Usdin K. Double-strand break repair plays a role in repeat instability in a fragile X mouse model. DNA Repair. 2019;74:63–9.

    Article  CAS  PubMed  Google Scholar 

  52. Zhao X, Zhang Y, Wilkins K, Edelmann W, Usdin K. MutLγ promotes repeat expansion in a Fragile X mouse model while EXO1 is protective. PLoS Genet. 2018;14(10):e1007719.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Chan AW, Xu Y, Jiang J, Rahim T, Zhao D, Kocerha J, et al. A two years longitudinal study of a transgenic Huntington disease monkey. BMC Neurosci. 2014;15:36.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Mollersen L, Rowe AD, Illuzzi JL, Hildrestrand GA, Gerhold KJ, Tveteras L, et al. Neil1 is a genetic modifier of somatic and germline CAG trinucleotide repeat instability in R6/1 mice. Hum Mol Genet. 2012;21(22):4939–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Steves AN, Bradner JM, Fowler KL, Clarkson-Townsend D, Gill BJ, Turry AC, et al. Ubiquitous flame-retardant toxicants impair spermatogenesis in a human stem cell model. iScience. 2018;3:161–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Steves AN, Turry A, Gill B, Clarkson-Townsend D, Bradner JM, Bachli I, et al. Per- and polyfluoroalkyl substances impact human spermatogenesis in a stem-cell-derived model. Syst Biol Reprod Med. 2018;64(4):225–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chan AW, Jiang J, Chen Y, Li C, Prucha MS, Hu Y, et al. Progressive cognitive deficit, motor impairment and striatal pathology in a transgenic Huntington disease monkey model from infancy to adulthood. PLoS One. 2015;10(5):e0122335.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kocerha J, Liu Y, Willoughby D, Chidamparam K, Benito J, Nelson K, et al. Longitudinal transcriptomic dysregulation in the peripheral blood of transgenic Huntington's disease monkeys. BMC Neurosci. 2013;14:88.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lallani SB, Villalba RM, Chen Y, Smith Y, Chan AWS. Striatal interneurons in transgenic nonhuman primate model of Huntington’s disease. Sci Rep. 2019;9(1):3528.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Meng Y, Jiang J, Bachevalier J, Zhang X, Chan AW. Developmental whole brain white matter alterations in transgenic Huntington’s disease monkey. Sci Rep. 2017;7(1):379.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Raper J, Bosinger S, Johnson Z, Tharp G, Moran SP, Chan AW. Increased irritability, anxiety, and immune reactivity in transgenic Huntington’s disease monkeys. Brain Behav Immun. 2016;58:181–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. MacRae SL, Croken MM, Calder RB, Aliper A, Milholland B, White RR, et al. DNA repair in species with extreme lifespan differences. Aging (Albany NY). 2015;7(12):1171–84.

    Article  CAS  Google Scholar 

  63. Mouse Genome Sequencing C, Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, et al. Initial sequencing and comparative analysis of the mouse genome. Nature. 2002;420(6915):520–62.

    Article  Google Scholar 

  64. Lai Y, Budworth H, Beaver JM, Chan NL, Zhang Z, McMurray CT, et al. Crosstalk between MSH2-MSH3 and polbeta promotes trinucleotide repeat expansion during base excision repair. Nat Commun. 2016;7:12465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Massey TH, Jones L. The central role of DNA damage and repair in CAG repeat diseases. Dis Model Mech. 2018;11(1).

  66. Wheeler VC, Lebel LA, Vrbanac V, Teed A, te Riele H, MacDonald ME. Mismatch repair gene Msh2 modifies the timing of early disease in Hdh(Q111) striatum. Hum Mol Genet. 2003;12(3):273–81.

    Article  CAS  PubMed  Google Scholar 

  67. Pinto RM, Dragileva E, Kirby A, Lloret A, Lopez E, St Claire J, et al. Mismatch repair genes Mlh1 and Mlh3 modify CAG instability in Huntington's disease mice: genome-wide and candidate approaches. PLoS Genet. 2013;9(10):e1003930.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ooi J, Langley SR, Xu X, Utami KH, Sim B, Huang Y, et al. Unbiased profiling of isogenic huntington disease hPSC-derived CNS and peripheral cells reveals strong cell-type specificity of CAG length effects. Cell Rep. 2019;26(9):2494–508.e7.

    Article  CAS  PubMed  Google Scholar 

  69. Cardozo-Pelaez F, Song S, Parthasarathy A, Hazzi C, Naidu K, Sanchez-Ramos J. Oxidative DNA damage in the aging mouse brain. Mov Disord. 1999;14(6):972–80.

    Article  CAS  PubMed  Google Scholar 

  70. Goold R, Flower M, Moss DH, Medway C, Wood-Kaczmar A, Andre R, et al. FAN1 modifies Huntington’s disease progression by stabilizing the expanded HTT CAG repeat. Hum Mol Genet. 2019;28(4):650–61.

    Article  CAS  PubMed  Google Scholar 

  71. Jonson I, Ougland R, Klungland A, Larsen E. Oxidative stress causes DNA triplet expansion in Huntington’s disease mouse embryonic stem cells. Stem Cell Res. 2013;11(3):1264–71.

    Article  CAS  PubMed  Google Scholar 

  72. Maiuri T, Mocle AJ, Hung CL, Xia J, van Roon-Mom WM, Truant R. Huntingtin is a scaffolding protein in the ATM oxidative DNA damage response complex. Hum Mol Genet. 2017;26(2):395–406.

    CAS  PubMed  Google Scholar 

  73. Ferlazzo ML, Sonzogni L, Granzotto A, Bodgi L, Lartin O, Devic C, et al. Mutations of the Huntington’s disease protein impact on the ATM-dependent signaling and repair pathways of the radiation-induced DNA double-strand breaks: corrective effect of statins and bisphosphonates. Mol Neurobiol. 2014;49(3):1200–11.

    Article  CAS  PubMed  Google Scholar 

  74. Brykczynska U, Hisano M, Erkek S, Ramos L, Oakeley EJ, Roloff TC, et al. Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nat Struct Mol Biol. 2010;17(6):679–87.

    Article  CAS  PubMed  Google Scholar 

  75. Budworth H, McMurray CT. A brief history of triplet repeat diseases. Methods Mol Biol. 2013;1010:3–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR. Distinctive chromatin in human sperm packages genes for embryo development. Nature. 2009;460(7254):473–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kovtun IV, Goellner G, McMurray CT. Structural features of trinucleotide repeats associated with DNA expansion. Biochem Cell Biol. 2001;79(3):325–36.

    Article  CAS  PubMed  Google Scholar 

  78. Siklenka K, Erkek S, Godmann M, Lambrot R, McGraw S, Lafleur C, et al. Disruption of histone methylation in developing sperm impairs offspring health transgenerationally. Science. 2015;350(6261):aab2006.

    Article  PubMed  Google Scholar 

  79. Buaas FW, Kirsh AL, Sharma M, McLean DJ, Morris JL, Griswold MD, et al. Plzf is required in adult male germ cells for stem cell self-renewal. Nat Genet. 2004;36(6):647–52.

    Article  CAS  PubMed  Google Scholar 

  80. Hermann BP, Sukhwani M, Simorangkir DR, Chu T, Plant TM, Orwig KE. Molecular dissection of the male germ cell lineage identifies putative spermatogonial stem cells in rhesus macaques. Hum Reprod. 2009;24(7):1704–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kovtun IV, Therneau TM, McMurray CT. Gender of the embryo contributes to CAG instability in transgenic mice containing a Huntington’s disease gene. Hum Mol Genet. 2000;9(18):2767–75.

    Article  CAS  PubMed  Google Scholar 

  82. Telenius H, Kremer B, Goldberg YP, Theilmann J, Andrew SE, Zeisler J, et al. Somatic and gonadal mosaicism of the Huntington disease gene CAG repeat in brain and sperm. Nat Genet. 1994;6(4):409–14.

    Article  CAS  PubMed  Google Scholar 

  83. Wheeler VC, Persichetti F, McNeil SM, Mysore JS, Mysore SS, MacDonald ME, et al. Factors associated with HD CAG repeat instability in Huntington disease. J Med Genet. 2007;44(11):695–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Beaver JM, Lai Y, Xu M, Casin AH, Laverde EE, Liu Y. AP endonuclease 1 prevents trinucleotide repeat expansion via a novel mechanism during base excision repair. Nucleic Acids Res. 2015;43(12):5948–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Crespan E, Hubscher U, Maga G. Expansion of CAG triplet repeats by human DNA polymerases lambda and beta in vitro, is regulated by flap endonuclease 1 and DNA ligase 1. DNA Repair (Amst). 2015;29:101–11.

    Article  CAS  Google Scholar 

  86. Mason AG, Tome S, Simard JP, Libby RT, Bammler TK, Beyer RP, et al. Expression levels of DNA replication and repair genes predict regional somatic repeat instability in the brain but are not altered by polyglutamine disease protein expression or age. Hum Mol Genet. 2014;23(6):1606–18.

    Article  CAS  PubMed  Google Scholar 

  87. Liu Y, Zhang Y, Yin J, Gao Y, Li Y, Bai D, et al. Distinct H3K9me3 and DNA methylation modifications during mouse spermatogenesis. J Biol Chem. 2019;294(49):18714–25.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Lombo M, Fernandez-Diez C, Gonzalez-Rojo S, Herraez MP. Genetic and epigenetic alterations induced by bisphenol A exposure during different periods of spermatogenesis: from spermatozoa to the progeny. Sci Rep. 2019;9(1):18029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. McSwiggin HM, O'Doherty AM. Epigenetic reprogramming during spermatogenesis and male factor infertility. Reproduction. 2018;156(2):R9–R21.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

All materials and experiments were performed at the Yerkes National Primate Research Center (YNPRC). We would like to thank YNPRC staff, Jinjing Yang, Siran Tian, Dr. Kanchana Punyawai, and other Dr. Chan’s Lab members.

Funding

YNPRC is supported by the Office of Research and Infrastructure Program (ORIP)/OD P51OD11132. The Transgenic Huntington’s Disease Monkey Resource “THDMR” and this study were supported in part by grants awarded by the ORIP/NIH (OD010930) and NINDS/NIH (NS101701) to AWSC. This study was also supported in part by OD020182 and Georgia Partners in Regenerative Medicine Seed Grant to AWSC and CAE. We also received the support by the Emory University Research Council and Arthur and Sarah Merrill Foundation to AWSC and IKC. Sujittra Khampang and Rangsun Parnpai are supported by SUT-PhD scholarship, Suranaree University of Technology, Nakhorachasrima, Thailand.

Author information

Authors and Affiliations

Authors

Contributions

Anthony W. S. Chan, In Ki Cho, and Sujittra Khampang conceptualized the study, designed experimentations, and wrote the manuscript. Sujittra Khampang and In Ki Cho performed experiments, data collection, and data analysis. Anthony W. S. Chan and Charles A. Easley IV supervised the spermatogenic cell differentiation, characterization, and experimental procedures. Wiriya Mahikul supervised the data analysis and statistical interpretation. Rangsun Parnpai supervised and reviewed the manuscript. All authors reviewed and approved the manuscript.

Corresponding authors

Correspondence to In Ki Cho or Anthony W.S. Chan.

Ethics declarations

Disclaimer

This work was prepared while Anthony W.S. Chan was employed at Yerkes National Primate Research Center and Emory University. The opinions expressed in this article are the author's own and do not reflect the view of the National Institutes of Health, the Department of Health and Human Services, or the United States government.

Ethics approval

N/A

Consent to participate

N/A

Consent for publication

N/A

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 2468 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khampang, S., Parnpai, R., Mahikul, W. et al. CAG repeat instability in embryonic stem cells and derivative spermatogenic cells of transgenic Huntington’s disease monkey. J Assist Reprod Genet 38, 1215–1229 (2021). https://doi.org/10.1007/s10815-021-02106-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-021-02106-3

Keywords

Navigation