Skip to main content
Log in

Mechanical property variation of AgNW/PDMS nanocomposites for fully elastomeric electrodes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Soft electronics necessitate the use of elastomeric components that can sustain dynamic mechanical strain for utilization in highly durable, reliable, and wearable applications. Notably, the development of elastomeric electrodes has been of significant interest for both academic and industrial research. High electrical conductivity, low performance discrepancy under various types of mechanical stimuli, and stable repeatability in the influence of dynamic strain cycles are considered to be some of the major prerequisites for the best soft electronics. Thus, a great deal of effort has been devoted to the formation of such elastomeric electrodes via special architecture and structural engineering. Recent remarkable outcomes in elastomeric electrodes have been accomplished by forming nanocomposites with a percolated network of low-dimensional metallic materials and an elastomer. This approach has aided in achieving scalable manufacturing, soluble printing, extreme mechanical stretchability, and low costs. Herein, we report nanocomposites of silver nanowires (AgNWs) and polydimethylsiloxane (PDMS) with different mechanical properties in order to maximize the electrical performance under various types of mechanical stimuli. Owing to the percolated AgNWs embedded in elastomeric PDMS, the resulting elastomeric electrodes can sustain a mechanical strain of up to 50%, while maintaining a resistance that is below 5 Ω/sq. In addition, a moderate increase in the sheet resistance was observed even after 130 k stretch-release cycles. Our AgNW elastomeric electrodes can be used in elastomeric heaters and have led to the successful capture of dynamic electrophysiological human bio-signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. C.W. Carpenter, S.T.M. Tan, C. Keef, K. Skelil, M. Malinao, D. Rodriquez, M.A. Alkhadra, J. Ramírez, D.J. Lipomi, Sens. Actuators A Phys. 288, 79 (2019)

    Article  CAS  Google Scholar 

  2. H.J. Kim, K. Sim, A. Thukral, C. Yu, Sci. Adv. 3, 1 (2017)

    CAS  Google Scholar 

  3. J. Li, L. Geng, G. Wang, H. Chu, H. Wei, Chem. Mater. 29, 8932 (2017)

    Article  CAS  Google Scholar 

  4. H. Lee, E. Kim, Y. Lee, H. Kim, J. Lee, M. Kim, H.J. Yoo, S. Yoo, Sci. Adv. 4, 1 (2018)

    Google Scholar 

  5. Y. Liu, M. Pharr, G.A. Salvatore, ACS Nano 11, 1916 (2017)

    Google Scholar 

  6. C.G. Burns, L. Oliveira, P. Thomas, S. Iyer, S. Birrell, IEEE Intell. Veh. Symp. Proc. 2019, 70 (2019)

    Google Scholar 

  7. X. Guo, W. Pei, Y. Wang, Y. Chen, H. Zhang, X. Wu, X. Yang, H. Chen, Y. Liu, R. Liu, Biomed. Signal Process. Control 30, 98 (2016)

    Article  Google Scholar 

  8. J. Nuamah, Y. Seong, in 2017 12th System of Systems Engineering Conference (SoSE)(2017)

  9. A.J.T. Teo, A. Mishra, I. Park, Y.J. Kim, W.T. Park, Y.J. Yoon, ACS Biomater. Sci. Eng. 2, 454 (2016)

    Article  CAS  Google Scholar 

  10. J. Ge, L. Sun, F.R. Zhang, Y. Zhang, L.A. Shi, H.Y. Zhao, H.W. Zhu, H.L. Jiang, S.H. Yu, Adv. Mater. 28, 722 (2016)

    Article  CAS  Google Scholar 

  11. H.J. Kim, A. Thukral, C. Yu, ACS Appl. Mater. Interfaces 10, 5000 (2018)

    Article  CAS  Google Scholar 

  12. N. Zhang, L. Ge, H. Xu, X. Zhu, G. Gu, Sens. Actuators A Phys. 312, 112090 (2020)

    Article  CAS  Google Scholar 

  13. B.A. Baydere, S.K. Talas, E. Samur, Sens. Actuators A Phys. 281, 84 (2018)

    Article  CAS  Google Scholar 

  14. K.J. Yu, Z. Yan, M. Han, J.A. Rogers, Npj Flex. Electron. 1, 1 (2017)

    Article  Google Scholar 

  15. J. Song, X. Feng, Y. Huang, Natl. Sci. Rev. 3, 128 (2016)

    Article  CAS  Google Scholar 

  16. G.P.T. Choi, L.H. Dudte, L. Mahadevan, Nat. Mater. 18, 999 (2019)

    Article  CAS  Google Scholar 

  17. Y. Su, X. Ping, K.J. Yu, J.W. Lee, J.A. Fan, B. Wang, M. Li, R. Li, D.V. Harburg, Y.A. Huang, C. Yu, S. Mao, J. Shim, Q. Yang, P.Y. Lee, A. Armonas, K.J. Choi, Y. Yang, U. Paik, T. Chang, T.J. Dawidczyk, Y. Huang, S. Wang, J.A. Rogers, Adv. Mater. 29, 1 (2017)

    Google Scholar 

  18. M. Haghgoo, R. Ansari, M.K. Hassanzadeh-Aghdam, M. Nankali, Compos. Part A Appl. Sci. Manuf. 126, 105616 (2019)

    Article  CAS  Google Scholar 

  19. H.J. Kim, A. Thukral, S. Sharma, C. Yu, Adv. Mater. Technol. 3, 1 (2018)

    Google Scholar 

  20. S. Cho, S. Kang, A. Pandya, R. Shanker, Z. Khan, Y. Lee, J. Park, S.L. Craig, H. Ko, ACS Nano 11, 4346 (2017)

    Article  CAS  Google Scholar 

  21. H. Li, G. Ding, Z. Yang, Micromachines 10, 206 (2019)

    Article  Google Scholar 

  22. D.T. Nguyen, H. Youn, A.C.S. Appl, Mater. Interfaces 11, 42469 (2019)

    Article  CAS  Google Scholar 

  23. Y. Chen, R.S. Carmichael, T.B. Carmichael, ACS Appl. Mater. Interfaces 11, 31210 (2019)

    Article  CAS  Google Scholar 

  24. H.S. Liu, B.C. Pan, G.S. Liou, Nanoscale 9, 2633 (2017)

    Article  Google Scholar 

  25. F. Xu, Y. Zhu, Adv. Mater. 24, 5117 (2012)

    Article  CAS  Google Scholar 

  26. J. Kim, J. Park, U. Jeong, J.W. Park, J. Appl. Polym. Sci. 133, 1 (2016)

    Google Scholar 

  27. K.K. Kim, S. Hong, H.M. Cho, J. Lee, Y.D. Suh, J. Ham, S.H. Ko, Nano Lett. 15, 5240 (2015)

    Article  CAS  Google Scholar 

  28. H. Lee, S. Hong, J. Lee, Y.D. Suh, J. Kwon, H. Moon, H. Kim, J. Yeo, S.H. Ko, ACS Appl. Mater. Interfaces 8, 15449 (2016)

    Article  CAS  Google Scholar 

  29. J. Liang, L. Li, X. Niu, Z. Yu, Q. Pei, Nat. Photonics 7, 817 (2013)

    Article  CAS  Google Scholar 

  30. J. Liang, L. Li, K. Tong, Z. Ren, W. Hu, X. Niu, Y. Chen, Q. Pei, ACS Nano 8, 1590 (2014)

    Article  CAS  Google Scholar 

  31. J. Liang, K. Tong, Q. Pei, Adv. Mater. 28, 5986 (2016)

    Article  CAS  Google Scholar 

  32. V. Martinez, F. Stauffer, M.O. Adagunodo, C. Forro, J. Vörös, A. Larmagnac, ACS Appl. Mater. Interfaces 7, 13467 (2015)

    Article  CAS  Google Scholar 

  33. B.S. Kim, H. Kwon, H.J. Kwon, J.B. Pyo, J. Oh, S.Y. Hong, J.H. Park, K. Char, J.S. Ha, J.G. Son, S.S. Lee, Adv. Funct. Mater. 30, 1 (2020)

    Google Scholar 

  34. G. Lee, G.Y. Bae, J.H. Son, S. Lee, S.W. Kim, D. Kim, S.G. Lee, K. Cho, Adv. Sci. 7, 1 (2020)

    Google Scholar 

  35. Y. Lu, L.M. Santino, S. Acharya, H. Anandarajah, J.M. D’Arcy, J. Chem. Educ. 94, 950 (2017)

    Article  CAS  Google Scholar 

  36. A.P. Schuetze, W. Lewis, C. Brown, W.J. Geerts, Am. J. Phys. 72, 149 (2004)

    Article  Google Scholar 

  37. N. Stafie, D.F. Stamatialis, M. Wessling, Sep. Purif. Technol. 45, 220 (2005)

    Article  CAS  Google Scholar 

  38. Z. Wang, A.A. Volinsky, N.D. Gallant, J. Appl. Polym. Sci. 131, 1 (2014)

    Article  Google Scholar 

  39. F. Ershad, A. Thukral, J. Yue, P. Comeaux, Y. Lu, H. Shim, K. Sim, N.I. Kim, Z. Rao, R. Guevara, L. Contreras, F. Pan, Y. Zhang, Y.S. Guan, P. Yang, X. Wang, P. Wang, X. Wu, C. Yu, Nat. Commun. 11, 1 (2020)

    Article  Google Scholar 

  40. J. Huang, B. Chen, B. Yao, W. He, IEEE Access 7, 92871 (2019)

    Article  Google Scholar 

  41. S. Choi, S.I. Han, D. Jung, H.J. Hwang, C. Lim, S. Bae, O.K. Park, C.M. Tschabrunn, M. Lee, S.Y. Bae, J.W. Yu, J.H. Ryu, S.W. Lee, K. Park, P.M. Kang, W.B. Lee, R. Nezafat, T. Hyeon, D.H. Kim, Nat. Nanotechnol. 13, 1048 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (NRF-2019R1C1C1004104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hae-Jin Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Information 1 (DOCX 602 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, S., Heo, S. & Kim, HJ. Mechanical property variation of AgNW/PDMS nanocomposites for fully elastomeric electrodes. J Mater Sci: Mater Electron 32, 4727–4736 (2021). https://doi.org/10.1007/s10854-020-05210-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05210-9

Navigation