Skip to main content
Log in

The role of butanol isomers on the performance of ammonia sensors based on polypyrrole prepared by microemulsion polymerization

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The aim of this research is to investigate the effect of butanol isomers used as cosurfactants in the microemulsion polymerization of pyrrole, on the sensitivity of the sensing layers made of polypyrrole (PPy) towards ammonia gas. PPy nanoparticles were synthesized via microemulsion polymerization using sodium dodecyl sulfate (SDS), butanol isomers (n-butanol, 2-butanol and t-butanol) and Ammonium persulfate (APS) as a surfactant and a dopant, cosurfactants, and an oxidant respectively. Design of Experiments (DoE) method was followed in order to explore the effect of isomer type of cosurfactant and surfactant concentration on sensor sensitivity at room temperature towards acetone, ethanol, methanol and ammonia vapors. Under optimal conditions, the sensitivity towards ammonia reached 24.1% at 25 ppm with a response time of 5 s, and a recovery time of 442 s. On the other hand, the sensitivity to all other volatile organic compounds (VOCs) up to 500 ppm was insignificant. Scanning electron microscopy (SEM) micrographs showed that films are formed from nanoparticles with an average diameter ranging from 10 to 20 nm. Absorption spectra in the UV–vis range were all similar. This indicates that butanol isomers have no effect on the optical properties of PPy. Nanostructured SDS doped PPy films prepared by microemulsion polymerization, show good sensing performance towards ammonia at room temperature which make this polymerization method very promising candidate for the fabrication of ammonia sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hazardous substance fact sheet (ammonia) New Jersey Department of Health. www.state.nj.us/health/eoh/rtkweb/documents/fs/0084.pdf. Accessed Feb 2020.

  2. M.S. Freund, N.S. Lewis, Proc. Natl. Acad. Sci. USA 92, 2652 (1995)

    Article  CAS  Google Scholar 

  3. B. Lakard, S. Carquigny, O. Segut, T. Patois, S. Lakard, Metals 5, 1371 (2015)

    Article  Google Scholar 

  4. L.G. Paterno, L.H.C. Mattoso, J. Appl. Polym. Sci. 83, 1309 (2001)

    Article  Google Scholar 

  5. M. Brie, R. Turcu, C. Neamtu, S. Pruneanu, Sens. Actuators B Chem. 37, 119 (1996)

    Article  CAS  Google Scholar 

  6. K.K.L. Wong, Z. Tang, J.K.O. Sin, P.C.H. Chan, P.W. Cheung, H. Hiraoka. IEEE (ICSE) 217 (1996)

  7. N. Chartuprayoon, C.M. Hangarter, Y. Rheem, H. Jung, N.V. Myung, J. Phys. Chem. C 114, 11103 (2010)

    Article  CAS  Google Scholar 

  8. K.H. Masri, H.A. Kalaleh, A. Alhassan, J. Electron. Mater. 48, 5967 (2019)

    Article  CAS  Google Scholar 

  9. L. Zhang, F. Meng, Y. Chen, J. Liu, Y. Sun, T. Luo, M. Li, J. Liu, Sens. Actuators B Chem. 142, 204 (2009)

    Article  CAS  Google Scholar 

  10. S. Singh, S. Sharma, R.C. Singh, S. Sharma, Appl. Surf. Sci. 532, 147373 (2020)

    Article  CAS  Google Scholar 

  11. D. Punetha, S.K. Pandey, IEEE Sensors J. 20, 1738 (2020)

    Article  CAS  Google Scholar 

  12. R.S. Andre, D. Kwak, Q. Dong, W. Zhong, D.S. Correa, L.H.C. Mattoso, Y. Lei, Sensors 18, 1058 (2018)

    Article  Google Scholar 

  13. P. Mavinakuli, S. Wei, Q. Wang, A.B. Karki, S. Dhage, Z. Wang, D.P. Young, Z. Guo, J. Phys. Chem. C 114, 3874 (2010)

    Article  CAS  Google Scholar 

  14. E.J. Oh, K.S. Jang, A.G. Macdiarmid, Synth. Met. 125, 267 (2001)

    Article  Google Scholar 

  15. P. Dallas, D. Niarchos, D. Vrbanic, N. Boukos, S. Pejovnik, Ch. Trapalis, D. Petridis, Polymer 48, 2007 (2007)

    Article  CAS  Google Scholar 

  16. S. Ghosh, G.A. Bowmaker, R.P. Cooney, J.M. Seakins, Synth. Met. 95, 63 (1998)

    Article  CAS  Google Scholar 

  17. A.C.A. Lewandowska, J. Soloducho, A.G. Drzazga, M. Szablewski, IEEE Trans. Dielectr. Electr. Insul. 8, 559 (2001)

    Article  Google Scholar 

  18. L. Geng, Y. Zhao, X. Huang, S.H. Wang, S. Zhang, W. Huang, S.H. Wu, Synth. Met. 156, 1078 (2006)

    Article  CAS  Google Scholar 

  19. D.Y. Kim, J.Y. Lee, D.K. Moon, C.Y. Kim, Synth. Met. 69, 471 (1995)

    Article  CAS  Google Scholar 

  20. O.S. Kwon, J.Y. Hong, S.J. Park, Y. Jang, J. Jang, J. Phys. Chem. C 114, 18874 (2010)

    Article  CAS  Google Scholar 

  21. L. Geng, Sh. Wub, Mater. Res. Bull. 48, 4339 (2013)

    Article  CAS  Google Scholar 

  22. X. Yang, L. Li, Y. Zhaob, Synth. Met. 160, 1822 (2010)

    Article  CAS  Google Scholar 

  23. M. Joulazadeh, A.H. Navarchian, Synth. Met. 210, 404 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hussam-Aldeen Kalaleh or Khaled Masri.

Ethics declarations

Competing interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalaleh, HA., Masri, K. The role of butanol isomers on the performance of ammonia sensors based on polypyrrole prepared by microemulsion polymerization. J Mater Sci: Mater Electron 32, 5978–5988 (2021). https://doi.org/10.1007/s10854-021-05318-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05318-6

Navigation