Skip to main content
Log in

Novel low Ag-content Sn–Ag–Cu–Sb–Al solder alloys with enhanced elastic compliance and plastic energy dissipation ability by applying rotating magnetic field

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The main scope of this research is to investigate the impact of rotating magnetic field (RMF) on the physical properties of the Sn–0.5Ag–0.5Cu–2.0Sb–0.1Al (SAC0505SbAl) solder alloy. The application of RMF during molten alloy cooling showed prominent effect on the morphology, thermal properties, and the consequent mechanical characteristics. It was shown that the dendritic morphology was changed from columnar dendrites to equiaxed grains with the application of RMF. In addition, RMF processing modified the eutectic phases in the alloy matrix. These notable modifications have resulted in a substantial increase in ductility (~ 30%) with a slight decrease in tensile parameters (UTS and YS). Such effects could enhance elastic compliance and plastic energy dissipation ability of solder alloys, which plays superbly fundamental function in drop-impact reliability. Differential scanning calorimetry (DSC) analysis reveals that significant decrease in pasty range (from 10.8 to 7.5 °C) and undercooling (from 13.1 to 9.0 °C) was attained after applying RMF. The stress exponent (n), the activation energy (Q), and deformation mechanism of the SAC0505SbAl alloy processed with and without RMF were discussed in detail. The obtained results are certainly expected to fill the knowledge gap about the behavior of these recently developed solder alloys under the effect of RMF that are potential alternatives as Pb-free interconnecting material in microelectronic packaging industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.W. Kim, H.J. Lee, S.B. Jung, Thin Solid Films 547, 120–124 (2013)

    Article  CAS  Google Scholar 

  2. J. Gu, J. Lin, Y. Lei, H. Fu, Micro. Rel. 80, 29–36 (2018)

    Article  CAS  Google Scholar 

  3. B. Wang, J. Li, A. Gallagher, J. Wrezel, P. Towashirporn, N. Zhao, Micro. Rel. 52, 1475–1482 (2012)

    Article  CAS  Google Scholar 

  4. A.M. El-Taher, A.A. Ibrahiem, A.F. Razzk, J. Mater. Sci.: Mater. Elec. 31, 5521–5532 (2020)

    CAS  Google Scholar 

  5. K. Kanlayasiri, M. Mongkolwongrojn, T. Ariga, J. Alloys Compd. 485, 225–230 (2009)

    Article  CAS  Google Scholar 

  6. I.E. Anderson, J. Mater. Sci.: Mater. Elec. 18, 55–76 (2007)

    CAS  Google Scholar 

  7. A.A. El-Daly, A.M. El-Taher, T.R. Dalloul, J. Alloys. Compd. 587, 32–39 (2014)

    Article  CAS  Google Scholar 

  8. A.M. El-Taher, A.F. Razzk, Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00856-w

    Article  Google Scholar 

  9. A.E. Hammad, Micro. Rel. 87, 133–141 (2018)

    Article  CAS  Google Scholar 

  10. A.A. El-Daly, A. Fawzy, S.F. Mansour, M.J. Younis, J. Mater. Sci.: Mater. Elec. 24, 2976–2988 (2013)

    CAS  Google Scholar 

  11. A.A. El-Daly, A.M. El-Taher, S. Gouda, Mater. Des. 65, 796–805 (2015)

    Article  CAS  Google Scholar 

  12. J.J. Sundelin, S.T. Nurmi, T.K. Lepistö, E.O. Ristolainen, Mater. Sci. Eng. A 420(1–2), 55–62 (2006)

    Article  CAS  Google Scholar 

  13. A.A. El-Daly, A.M. El-Taher, Mater. Des. 47, 607–614 (2013)

    Article  CAS  Google Scholar 

  14. A.E. Hammad, A.M. El-Taher, J. Electron. Mater. 43, 4146–4157 (2014)

    Article  CAS  Google Scholar 

  15. A.K. Gain, L. Zhang, Materialia 5, 100234 (2019)

    Article  CAS  Google Scholar 

  16. A.A. El-Daly, A.M. El-Taher, M.Z.F. Zaky, Arab. J. Nucl. Sci. Appl. 50(1), 204–216 (2017)

    Google Scholar 

  17. B.I. Noh, J.H. Choi, J.W. Yoon, S.B. Jung, J. Alloys Compd. 499, 154–159 (2010)

    Article  CAS  Google Scholar 

  18. N.A.A.M. Amin, D.A. Shnawah, S.M. Said, M.F.M. Sabri, H. Arof, J. Alloys Compd. 599, 114–120 (2014)

    Article  CAS  Google Scholar 

  19. W.M. Chen, S.K. Kang, C.R. Kao, J. Alloys Compd. 520, 244–249 (2012)

    Article  CAS  Google Scholar 

  20. Y. Tang, S.M. Luo, W.F. Huang, Y.C. Pan, G.Y. Li, J. Alloys Compd. 719, 365–375 (2017)

    Article  CAS  Google Scholar 

  21. A.A. El-Daly, A.Z. Mohamad, A. Fawzy, A.M. El-Taher, Mater. Sci. Eng. A 528, 1055–1062 (2011)

    Article  CAS  Google Scholar 

  22. D. Giuranno, S. Delsante, G. Borzone, R. Novakovic, J. Alloys Compd. 689, 918–930 (2016)

    Article  CAS  Google Scholar 

  23. B.L. Chen, G.Y. Li, IEE. Trans. Comp. Pack. Technol. 28(3), 534–541 (2005)

    Article  CAS  Google Scholar 

  24. K. Maslinda, A.S. Anasyida, M.S. Nurulakmal, J. Mater. Sci.: Mater. Elec. 27, 489–502 (2016)

    CAS  Google Scholar 

  25. Xi. Li, Y. Fautrelle, Z. Ren, Acta Mater. 55, 5333–5347 (2007)

    Article  CAS  Google Scholar 

  26. A.A. El-Daly, A.A. Ibrahiem, J. Alloys Compd. 730, 47–56 (2018)

    Article  CAS  Google Scholar 

  27. A.M. El-Taher, S.E. Abd El Azeem, A.A. Ibrahiem, J. Mater. Sci.: Mater. Elec. 31, 9630–9640 (2020)

    CAS  Google Scholar 

  28. J.C. Jie, Q.C. Zou, J.L. Sun, Y.P. Lu, T.M. Wang, T.J. Li, Acta Mater. 72, 57–66 (2014)

    Article  CAS  Google Scholar 

  29. S. Agrawal, A.K. Ghose, I. Chakrabarty, Mater. Des. 113, 195–206 (2017)

    Article  CAS  Google Scholar 

  30. D. Samanta, N. Zabaras, Int. J. Heat Mass Transf. 49, 4850–4866 (2006)

    Article  CAS  Google Scholar 

  31. V. Travnikov, K. Eckert, P.A. Nikrityuk, S. Odenbach, T. Vogt, S. Eckert, J. Cryst. Growth 339, 52–60 (2012)

    Article  CAS  Google Scholar 

  32. K.M. Liu, D.P. Lu, H.T. Zhou, Z.B. Chen, A. Atrens, L. Lu, Mater. Sci. Eng. A 584, 114–120 (2013)

    Article  CAS  Google Scholar 

  33. M. Huang, Q. Zhanga, L. Qia, L. Denga, Y. Li, J. Manuf. Process. 50, 456–466 (2020)

    Article  Google Scholar 

  34. J. Zeng, W. Chen, W. Yan, Y. Yang, A. McLean, Mater. Des. 108, 364–373 (2016)

    Article  CAS  Google Scholar 

  35. X.D. Wang, T.J. Li, Y. Fautrelle, M.D. Dupouy, J.Z. Jin, J. Cryst. Growth 275, 1473–1479 (2005)

    Article  CAS  Google Scholar 

  36. A.A. El-Daly, A.A. Ibrahiem, Micro. Rel. 81, 352–361 (2018)

    Article  CAS  Google Scholar 

  37. A.E. Hammad, M. Ragab, J. Mater. Sci.: Mater. Elec. 30, 18838–18847 (2019)

    CAS  Google Scholar 

  38. A.A. El-Daly, A.A. Ibrahiem, Micro. Rel. 98, 10–18 (2019)

    Article  CAS  Google Scholar 

  39. A.A. El-Daly, A.M. El-Taher, S. Gouda, J. Alloys Compd. 627, 268–275 (2015)

    Article  CAS  Google Scholar 

  40. A.A. El-Daly, A.Z. Mohamad, A. Fawzy, A.M. El-Taher, J. Alloys Compd. 509, 4574–4582 (2011)

    Article  CAS  Google Scholar 

  41. A.A. El-Daly, A.M. El-Taher, T.R. Dalloul, Mater. Des. 55, 309–318 (2014)

    Article  CAS  Google Scholar 

  42. C.W. Chang, K.L. Lin, J. Electron. Mater. 48, 135–141 (2019)

    Article  CAS  Google Scholar 

  43. D.A.A. Shnawah, S.B.M. Said, M.F.M. Sabri, I.A. Badruddin, F.X. Che, Micro. Rel. 52(11), 2701–2708 (2012)

    Article  CAS  Google Scholar 

  44. G.Y. Li, B.L. Chen, X.Q. Shi, Stephen, C.K. Wong, Z.F. Wang, Thin Solid Films 504, 421–425 (2006)

    Article  CAS  Google Scholar 

  45. X.O. Shi, W. Zhou, H.L.J. Pang, Z.P. Wang, J. Electron. Pack. 121, 179–185 (1999)

    Article  Google Scholar 

  46. H.Y. Song, Q.S. Zhu, Z.G. Wang, J.K. Shang, M. Luc, Mater. Sci. Eng. A 527, 1343–1350 (2010)

    Article  CAS  Google Scholar 

  47. A.A. El-Daly, A.M. El-Taher, Mater. Des. 51, 789–796 (2013)

    Article  CAS  Google Scholar 

  48. R. Mahmudi, A.R. Geranmayeh, H. Khanbareh, N. Jahangiri, Mater. Des. 30, 574–580 (2009)

    Article  CAS  Google Scholar 

  49. Q.S. Zhu, Z.G. Wang, S.D. Wu, J.K. Shang, Mater. Sci. Eng. A 502, 153–158 (2009)

    Article  CAS  Google Scholar 

  50. I. Shohji, T. Yoshida, T. Takahashi, S. Hioki, Mater. Sci. Eng. A 366, 50–55 (2004)

    Article  CAS  Google Scholar 

  51. R.J. McCabe, M.E. Fine, Metal. Mater. Trans. A 33A, 1531–1539 (2002)

    Article  CAS  Google Scholar 

  52. C.Z. Liu, T.Y. Kang, W. Wei, K. Zheng, L. Fu, L. Hui, J.J. Wang, W.P. Tong, J. Alloys Compd. 509(33), 8475–8477 (2011)

    Article  CAS  Google Scholar 

  53. J. Zhao, P. Yang, F. Zhu, C. Cheng, Scripta Mater. 54, 1077–1080 (2006)

    Article  CAS  Google Scholar 

  54. D.A. Shnawah, S.B.M. Said, M.F.M. Sabri, I.A. Badruddin, F.X. Che, Mater. Sci. Eng. A 551, 160 (2012)

    Article  CAS  Google Scholar 

  55. A.A. El-Daly, A.A. Ibrahiem, M.A. Abdo, N.A.M. Eid, J. Mater. Sci.: Mater. Elec. 30, 12937–12949 (2019)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. El-Taher.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Taher, A.M., Abd El Azeem, S.E. & Ibrahiem, A.A. Novel low Ag-content Sn–Ag–Cu–Sb–Al solder alloys with enhanced elastic compliance and plastic energy dissipation ability by applying rotating magnetic field. J Mater Sci: Mater Electron 32, 6199–6213 (2021). https://doi.org/10.1007/s10854-021-05336-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05336-4

Navigation