Skip to main content
Log in

Construction of High Efficient g-C3N4 Nanosheets Combined with Bi2MoO6 Photoanodes for Dye Sensitized Solar Cells

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this study, two narrow band gap semiconductor nanomaterials, graphitic carbon nitride (g-C3N4) and Bi2MoO6, were selected and coupled to form series of g-C3N4/Bi2MoO6 photoanodes. The existence of strong interfacial interactions between g-C3N4 and Bi2MoO6 were extensively characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV–Vis diffuse reflectance spectra (UV–Vis DRS) and Photoluminescence (PL). XRD and TEM results suggest that Bi2MoO6 belongs to orthorhombic crystal structure with fiber like morphology with average diameter of 20–30 nm and length up to several micrometers. Sandwich type solar cell was fabricated by deposition the hybrid materials on FTO glass substrate and technically studied the photovoltaic (PV) parameters through J–V characteristics. The results express that g-C3N4/Bi2MoO6 hybrid photoanode show fabulous photo conversion efficiency (PCE) of (13.56%), excellent stability and reusability. The superior photovoltaic performance of g-C3N4/Bi2MoO6 nanocomposite was owing to the interface of g-C3N4/Bi2MoO6 heterostructures whereas reduced the band-gap which enables high separation efficiency, suppressed recombination rate of charge carriers and their high specific surface area (103.56 m2/g). A possible photovoltaic mechanism under sun light was systematically discussed based on the experiment results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Wang, A. M. Anghel, B. Marsan, N.-L. C. Ha, N. Pootrakulchote, S. M. Zakeeruddin, and M. Grätzel (2009). J. Am. Chem. Soc. 131, 15976.

    Article  CAS  PubMed  Google Scholar 

  2. W. Wei, H. Wang, and Y. H. Hu (2014). Int. J. Energy Res. 38, 1099.

    Article  CAS  Google Scholar 

  3. M. Grätzel (2003). J. Photochem. Photobiol. C 4, 145.

    Article  Google Scholar 

  4. W. Wei, H. Wang, and Y. H. Hu (2013). J. Mater. Chem. 1, 14350.

    Article  CAS  Google Scholar 

  5. X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida, and E. Abe (2004). J. Electroanalyt. Chem. 570, 257.

    Article  CAS  Google Scholar 

  6. S.-S. Kim, Y.-C. Nah, Y.-Y. Noh, J. Jo, and D.-Y. Kim (2006). Electrochim. Acta. 51, 3814.

    Article  CAS  Google Scholar 

  7. Z. Mao, J. Chen, Y. Yang, D. Wang, L. Bie, B. D. Fahlman, and A. C. S. Appl (2017). Mater. Interfaces. 9, 12427.

    Article  CAS  Google Scholar 

  8. L. Zhang, X. He, X. Xu, C. Liu, Y. Duan, L. Hou, Q. Zhou, et al. (2017). Appl. Catal. B 1, 203.

    Google Scholar 

  9. X. Dong, J. Li, Q. Xing, Y. Zhou, H. Huang, and F. Dong (2018). Appl. Catal. B Environ. 232, 69.

    Article  CAS  Google Scholar 

  10. H. W. Huang, Y. He, Z. S. Lin, L. Kang, and Y. H. Zhang (2013). J. Phys. Chem. C 117, 22986.

    Article  CAS  Google Scholar 

  11. H. W. Huang, X. Han, X. W. Li, S. C. Wang, P. K. Chu, Y. H. Zhang, and A. C. S. Appl (2015). Mater. Interfaces 7, 482.

    Article  CAS  Google Scholar 

  12. H. W. Huang, X. W. Li, J. J. Wang, F. Dong, P. K. Chu, T. R. Zhang, and Y. H. Zhang (2015). ACS Catal. 5, 4094.

    Article  CAS  Google Scholar 

  13. M. Y. Zhang, C. L. Shao, J. B. Mu, Z. Y. Zhang, Z. C. Guo, P. Zhang, and Y. C. Liu (2012). Cryst. Eng. Commun. 14, 605.

    Article  CAS  Google Scholar 

  14. C. S. Guo, J. Xu, S. F. Wang, Y. Zhang, Y. He, and X. C. Li (2013). Catal. Sci. Technol. 3, 1603.

    CAS  Google Scholar 

  15. Y. Ma, Y. L. Jia, Z. B. Jiao, M. Yang, Y. X. Qi, and Y. P. Bi (2015). Chem. Commun. 51, 6655.

    Article  CAS  Google Scholar 

  16. Y. S. Xu and W. D. Zhang (2013). Dalton Trans. 42, 1094.

    Article  CAS  PubMed  Google Scholar 

  17. Z. W. Zhao, W. D. Zhang, Y. J. Sun, J. Y. Yu, Y. X. Zhang, H. Wang, F. Dong, and Z. B. Wu (2016). J. Phys. Chem. C 120, 11898.

    Google Scholar 

  18. H. Yu, L. Jiang, H. Wang, B. Huang, X. Yuan, J. Huang, J. Zhang, and G. Zeng (2019). Small 15, 1901008.

    Article  Google Scholar 

  19. H. Li, W. Li, F. Wang, X. Liu, and C. Ren (2017). Appl. Catal. B 217, 378.

    Article  CAS  Google Scholar 

  20. Q. Zhang, P. Chena, L. Chen, M. Wu, X. Dai, P. Xing, H. Lin, L. Zhao, and Y. He (2020). J. Colloid Interface Sci. 568, 117.

    Article  CAS  PubMed  Google Scholar 

  21. P. Chen, L. Chen, S. Ge, W. Zhang, M. Wu, P. Xing, T. B. Rotamond, H. Lin, Y. Wu, and Y. He (2020). Int. J. Hydrog. Energy 45, 14354.

    Article  CAS  Google Scholar 

  22. Z. Feng, L. Zeng, Q. Zhang, S. Ge, X. Zhao, H. Lin, and Y. He (2020). J. Environ. Sci. 87, 149.

    Article  Google Scholar 

  23. P. Chen, P. Xing, Z. Chen, X. Hu, H. Lin, L. Zhao, and Y. He (2019). J. Colloid Interface Sci. 534, 163.

    Article  CAS  PubMed  Google Scholar 

  24. Z. Chen, P. Chen, P. Xing, X. Hu, H. Lin, L. Zhao, Y. Wu, and Y. He (2019). Evolution. Fuel. 241, 1.

    Article  CAS  Google Scholar 

  25. S. Li, L. Bai, N. Ji, S. Yu, S. Lin, N. Tian, and H. Huang (2020). J. Mater. Chem. A. 8, 9268.

    Article  CAS  Google Scholar 

  26. N. Tian, K. Xiao, Y. Zhang, X. Lu, L. Ye, P. Gao, T. Ma, and H. Huang (2015). Appl. Catal. B 253, 196.

    Article  Google Scholar 

  27. N. Tain, H. Huang, X. Du, F. Dong, and Y. Zhang (2019). J. Mater. Chem. A 7, 11584.

    Article  Google Scholar 

  28. Elham Vesali-Kermani, Aziz Habibi-Yangjeh, Hadi Diarmand-Khalilabad, and Srabanti Ghosh (2020). J Colloid Interface Sci 563, 81.

    Article  CAS  PubMed  Google Scholar 

  29. Haiping Li, Jingyi Liu, Wanguo Hou, Du Na, Renjie Zhang, and Xutang Tao (2014). Appl Catal B 160–161, 89.

    Article  Google Scholar 

  30. Tianjin Ma, Wu Juan, Yidong Mi, Qinghua Chen, Dong Ma, and Chao Chai (2017). Sep. Purif. Technol. 183, 54.

    Article  CAS  Google Scholar 

  31. S. Prabhu, M. Pudukudy, S. Harish, M. Navaneethan, S. Sohila, K. Murugesan, and R. Ramesh (2020). Mater. Sci. Semiconduct. Process. 106, 10454.

    Article  Google Scholar 

  32. X. Qiao, Z. Zhang, Q. Li, D. Hou, Q. Zhang, J. Zhang, D. Li, P. Feng, and X. Bu (2018). J. Mater. Chem. A 6, 22580.

    Article  CAS  Google Scholar 

  33. J. Wu, Y. Sun, C. Gu, T. Wang, Y. Xin, C. Chai, C. Cui, and D. Ma (2018). Appl. Catal. B 237, 622.

    Article  CAS  Google Scholar 

  34. Q. Xiang, J. Yu, and M. Jaroniec (2011). J. Phys. Chem. C 115, 7355.

    Article  CAS  Google Scholar 

  35. S. Wang, D. Li, C. Sun, S. Yang, Y. Guan, and H. He (2014). Appl. Catal. B 144, 885.

    Article  CAS  Google Scholar 

  36. G. Tian, Y. Chen, W. Zhou, K. Pan, Y. Dong, C. Tian, and H. Fu (2011). J. Mater. Chem. 21, 887.

    Article  CAS  Google Scholar 

  37. J. M. Fernández, C. Barriga, M. A. Ulibarri, F. M. Labajos, and V. Rives (1997). Chem. Mater. 9, 312.

    Article  Google Scholar 

  38. M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito (2010). Nano Lett. 10, 751.

    Article  CAS  PubMed  Google Scholar 

  39. L. Zhang, T. Xu, X. Zhao, and Y. Zhu (2010). Appl. Catal. B 98, 138.

    Article  CAS  Google Scholar 

  40. Y. Shimodaira, H. Kato, H. Kobayashi, and A. Kudo (2006). J. Phys. Chem. B 110, 17790.

    Article  CAS  PubMed  Google Scholar 

  41. M. Parthibavarman, S. Sathishkumar, M. Jayashree, and R. BoopathiRaja (2019). J. Clust. Sci. 30, 351.

    Article  CAS  Google Scholar 

  42. M. Parthibavarman, S. Sathishkumar, S. Prabhakaran, M. Jayashree, and R. BoopathiRaja (2018). J. Iran. Chem. Soc. 15, 2789.

    Article  CAS  Google Scholar 

  43. J. An, G. Zhang, R. Zheng, and P. Wang (2016). J. Environ. Sci. (China) 48, 218.

    Article  CAS  Google Scholar 

  44. R. BoopathiRaja and M. Parthibavarman (2019). J. Alloy. Compd. 811, 152084.

    Article  CAS  Google Scholar 

  45. Z. Jia, F. Lyu, L. C. Zhang, S. Zeng, S. Liang, Y. Y. Li, and J. Lu (2019). Sci. Rep. 9, 7636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. V. Shanmugam, A. L. Muppudathi, S. Jayavel, and K. S. Jayaperumal (2020). Arabian J. Chem. 13, 2439.

    Article  CAS  Google Scholar 

  47. J. L. Lv, K. Dai, J. F. Zhang, L. Geng, C. H. Liang, and Q. C. Liu (2015). Appl. Surf. Sci. 358, 377.

    Article  CAS  Google Scholar 

  48. D. Ma, J. Wu, M. C. Gao, Y. J. Xin, and C. Chai (2017). Chem. Eng. J. 316, 461.

    Article  CAS  Google Scholar 

  49. H. P. Li, W. G. Hou, X. T. Tao, and N. Du (2015). Appl. Catal. B 172, 27.

    Article  Google Scholar 

  50. L. F. Yang, X. G. Yu, M. S. Xu, H. Z. Chen, and D. R. Yang (2014). J. Mater. Chem. 2, 16877.

    Article  CAS  Google Scholar 

  51. Zhuoqun Li, Feng Gong, Gang Zhou, and Zhong-Sheng Wang (2013). J. Phys. Chem. C 117, 6561.

    Article  CAS  Google Scholar 

  52. M. Indhumathy and A. Prakasam (2019). J. Mater. Sci. 30, 15444.

    CAS  Google Scholar 

  53. M. Indhumathy and A. Prakasam (2020). J. Clust. Sci. 31, 91.

    Article  CAS  Google Scholar 

  54. Haoran Yan, Xin Tian, Yongxin Pang, Bo Feng, Ke Duan, Zuowan Zhou, Jie Weng, and J. Wang (2016). RSC Adv. 6, 102444.

    Article  CAS  Google Scholar 

  55. Z. Yuan, R. Tang, Y. Zhang, and L. Yin (2017). J. Alloy. Compd. 691, 983.

    Article  CAS  Google Scholar 

  56. Zong-Lin Yang, Zhen-Yun Zhang, Wei-Li Fan, Hu Chao-sheng, Ling Zhang, and Jun-Jie Qi (2019). Solar Energy 193, 859.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Stephen Raja.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 323 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raja, J.S. Construction of High Efficient g-C3N4 Nanosheets Combined with Bi2MoO6 Photoanodes for Dye Sensitized Solar Cells. J Clust Sci 33, 509–518 (2022). https://doi.org/10.1007/s10876-021-01987-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-01987-9

Keywords

Navigation