Skip to main content
Log in

Facile Green Synthesis of Copper Oxide Nanoparticles and Their Rhodamine-b Dye Adsorption Property

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Adsorption has gained more popularity in wastewater treatment because the process is non-toxic, cheap, and highly efficient. Environmental and human-friendly adsorbents specifically have a vast prospective. Hence, in the present study, copper oxide nanoparticles (CuONPs) synthesized with Wedelia urticifolia leaf extract were used as adsorbents for Rhodamine-b (RhB) dye. The biomolecules responsible for the synthesis were predicted from Fourier transform infrared (FT-IR) analysis while UV–Visible (UV–Vis) spectroscopy, Dynamic laser spectroscopy (DLS), X-ray diffraction (XRD), and Transmission electron microscopy (TEM) techniques were used for particle characterization. The results revealed that the synthesized nanoparticles are crystalline and spherical with a size of less than 40 nm. The dye adsorption characteristics from the aquatic environment were investigated at room temperature under different doses of CuONPs, initial concentration of RhB dye, and contact time, and over 99% of RhB dye removal was achieved. The adsorption process of RhB dye onto the as-synthesized CuONPs was accurately described by the Freundlich isotherm and pseudo-second-order kinetic models. In summary, the as-synthesized nanoparticles possess an excellent ability for RhB adsorption, and hence these nanoparticles can be used as inexpensive, promising, and potential alternatives to traditional wastewater treatment techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y. R. Zhang, P. Su, J. Huang, Q. R. Wang, and B. X. Zhao (2015). Chem. Eng. J. 262, 313–318.

    Article  CAS  Google Scholar 

  2. S. Khan and A. Malik (2018). Environ. Sci. Pollut. Res. 25, 4446–4458.

    Article  CAS  Google Scholar 

  3. F. Nekouei, S. Nekouei, I. Tyagi, and V. K. Gupta (2015). J. Mol. Liq. 201, 124–133.

    Article  CAS  Google Scholar 

  4. M. Sharma, P. Das, and S. Datta, In Waste Valorisation and Recycling. (Springer, Singapore, 2019), pp. 453–466.

    Book  Google Scholar 

  5. S. Rajendran, M. M. Khan, F. Gracia, J. Qin, V. K. Gupta, and S. Arumainathan (2016). Sci. Rep. 6, 31641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. S. N. Jain and P. R. Gogate (2019). Int. J. Environ. Res. 13, 337–347.

    Article  CAS  Google Scholar 

  7. S. K. R. Yadanaparthi, D. Graybill, and R. Von-Wandruszka (2009). J. Hazard. Mater. 171, 1–15.

    Article  CAS  PubMed  Google Scholar 

  8. M. Y. Rather, and S. Sundarapandian, (2020). Appl. Nanosci. https://doi.org/https://doi.org/10.1007/s13204-020-01366-2.

  9. M. Ghaedi, H. Z. Khafri, A. Asfaram, and A. Goudarzi (2016). Spectrochim. Acta. Part A. 152, 233–240.

    Article  CAS  Google Scholar 

  10. E. A. Deliyanni, N. K. Lazaridis, E. N. Peleka, and K. A. Matis (2004). Environ. Sci. Pollut. Res. 11, 18–21.

    Article  CAS  Google Scholar 

  11. J. Yan, L. Han, W. Gao, S. Xue, and M. Chen (2015). Bioresour. Technol. 175, 269–274.

    Article  CAS  PubMed  Google Scholar 

  12. R. S. Kalhapure, S. J. Sonawane, D. R. Sikwal, M. Jadhav, S. Rambharose, C. Mocktar, and T. Govender (2015). Colloids. Surf. B. 136, 651–658.

    Article  CAS  Google Scholar 

  13. W. W. Tang, G. M. Zeng, J. L. Gong, J. Liang, P. Xu, C. Zhang, and B. B. Huang (2014). Sci. Total Environ. 468, 1014–1027.

    Article  PubMed  CAS  Google Scholar 

  14. S. Raina, A. Roy, and N. Bharadvaja (2020). Environ. Nanotechnol. Monit. Manage. 13, 100278.

    Google Scholar 

  15. N. Nagar and V. Devra (2018). Mater. Chem. Phys. 213, 44–51.

    Article  CAS  Google Scholar 

  16. J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson (2001). Appl. Phys. Lett. 78 (6), 718–720.

    Article  CAS  Google Scholar 

  17. N. Nazar, I. Bibi, S. Kamal, M. Iqbal, S. Nouren, K. Jilani, M. Umair, and S. Ata (2018). Int. J. Biol. Macromol. 106, 1203–1210.

    Article  CAS  PubMed  Google Scholar 

  18. Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, and S. Yang (2014). Prog. Mater. Sci. 60, 208–337.

    Article  CAS  Google Scholar 

  19. K. Saravanakumar, S. Shanmugam, N. B. Varukattu, D. MubarakAli, K. Kathiresan, and M. H. Wang (2019). J. Photochem. Photobiol. B.. 190, 103–109.

    Article  CAS  PubMed  Google Scholar 

  20. A. A. Keller, A. S. Adeleye, J. R. Conway, K. L. Garner, L. Zhao, G. N. Cherr, J. Hong, J. L. Gardea-Torresdey, H. A. Godwin, S. Hanna, and Z. Ji (2017). NanoImpact. 7, 28–40.

    Article  Google Scholar 

  21. C. C. Vidyasagar, Y. A. Naik, T. G. Venkatesha, and R. Viswanatha (2012). NanoMicro. Lett. 4, 73–77.

    CAS  Google Scholar 

  22. I. Perelshtein, A. Lipovsky, N. Perkas, T. Tzanov, and A. Gedanken (2016). Beilstein. J. Nanotechnol. 7, 1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. J. Jayaprakash, N. Srinivasan, P. Chandrasekaran, and E. K. Girija (2015). Spectrochim. Acta. Part. A. 136, 1803–1806.

    Article  CAS  Google Scholar 

  24. S. R. Ali, M. R. Ghadimi, M. Fecioru-Morariu, B. Beschoten, and G. Güntherodt (2012). Phys. Rev. B.. 85, 012404.

    Article  CAS  Google Scholar 

  25. M. Asif (2015). Chem. Int. 1, 134–163.

    CAS  Google Scholar 

  26. M. Onditi, G. Bosire, E. Changamu, and C. Ngila (2019). Starch. 71 (1800127), 1–8.

    Google Scholar 

  27. S. Francis, S. Joseph, E. P. Koshy, and B. Mathew (2017). Environ. Sci. Pollut. Res. 24, 17347–17357.

    Article  CAS  Google Scholar 

  28. S. Singh, A. Kumar, and H. (2020). Appl. Water Sci. 10, 185 (2020).

  29. L. Zhu, Y. J. Tian, Y. C. Yin, and S. M. Zhu, Ital. (J. Food, Sci, 2012), p. 24.

    Google Scholar 

  30. M. Y. Rather, M. Shincy, and S. Sundarapandian (2020). Micros. Res. Techniq. DOI: https://doi.org/10.1002/jemt.23499.

  31. V. Kumar, R. K. Gundampati, D. K. Singh, M. V. Jagannadham, S. Sundar, and S. H. Hasan (2016). J. Ind. Eng. Chem. 37, 224–236.

    Article  CAS  Google Scholar 

  32. Y. Choi, S. Kang, S. H. Cha, H. S. Kim, K. Song, Y. J. Lee, K. Kim, Y. S. Kim, S. Cho, and Y. Park (2018). Nanoscale. Res. Lett. 13, 1–10.

    Article  CAS  Google Scholar 

  33. P. Kuppusamy, M. M. Yusoff, G. P. Maniam, and N. Govindan (2016). Saudi. Pharm. J. 24, 473–484.

    Google Scholar 

  34. H. J. Lee, G. Lee, N. R. Jang, J. H. Yun, J. Y. Song, and B. S. Kim (2011). Nanotechnology. 1, 371–374.

    CAS  Google Scholar 

  35. D. Das, B. C. Nath, P. Phukon, and S. K. Dolui (2013). Colloids Surf. B. 101, 430–433.

    Article  CAS  Google Scholar 

  36. K. K. Singh, K. K. Senapati, and K. C. Sarma (2017). J. Environ. Chem. Eng. 5, 2214–2221.

    Article  CAS  Google Scholar 

  37. R. Sankar, P. Manikandan, V. Malarvizhi, T. Fathima, K. S. Shivashangari, and V. Ravikumar (2014). Spectrochim. Acta. Part A. 121, 746–750.

    Article  CAS  Google Scholar 

  38. E. S. Mehr, M. Sorbiun, A. Ramazani, and S. T. Fardood (2018). J. Mater. Sci.-Mater. Electron. 29, 1333–1340.

    Article  CAS  Google Scholar 

  39. K. Vishveshvar, M. A. Krishnan, K. Haribabu, and S. Vishnuprasad (2018). BioNanoScience. 8, 554–558.

    Article  Google Scholar 

  40. F. D. Koca, D. Demirezen-Yilmaz, F. Duman, and I. Ocsoy (2018). Chem. Ecol. 34, 839–853.

    Article  CAS  Google Scholar 

  41. R. Majumdar, B. G. Bag, and N. Maity (2013). Int. Nano. Lett. 3, 53.

    Article  CAS  Google Scholar 

  42. A. Munin and F. Edwards-Lévy (2011). Pharmaceutics. 3, 793–829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. S. Dagher, Y. Haik, A. I. Ayesh, and N. Tit (2014). J. Lumin. 151, 149–154.

    Article  CAS  Google Scholar 

  44. S. Gunalan, R. Sivaraj, and R. Venckatesh (2012). Spectrochim. Acta. Part. A. 97, 1140–1144.

    Article  CAS  Google Scholar 

  45. M. Nasrollahzadeh, M. Maham, and S. M. Sajadi (2015). J. Colloid. Interface. Sci. 455, 245–253.

    Article  CAS  PubMed  Google Scholar 

  46. A. H. Keihan, H. Veisi, and H. Veasi (2017). Appl. Organomet. Chem. 31, 3642.

    Article  CAS  Google Scholar 

  47. G. K. Devi, K. S. Kumar, R. Parthiban, and K. Kalishwaralal (2017). Microb. Pathog. 102, 120–132.

    Article  CAS  PubMed  Google Scholar 

  48. N. Edayadulla, N. Basavegowda, and Y. R. Lee (2015). J. Ind. Eng. Chem. 21, 1365–1372.

    Article  CAS  Google Scholar 

  49. P. Zhang, D. O’Connor, Y. Wang, L. Jiang, T. Xia, L. Wang, D. C. Tsang, Y. S. Ok, and D. Hou (2020). J. Hazard. Mater. 384, 121286.

    Article  CAS  PubMed  Google Scholar 

  50. K. K. Deepa, M. Sathishkumar, A. R. Binupriya, G. S. Murugesan, K. Swaminathan, and S. E. Yun (2006). Chemosphere. 62, 833–840.

    Article  CAS  PubMed  Google Scholar 

  51. N. Sebeia, M. Jabli, A. Ghith, and T. A. Saleh (2020). Arab. J. Chem. 13, 4263–4274.

    Article  CAS  Google Scholar 

  52. N. V. Suc, and D. Kim Chi (2017). J. Dispersion. Sci. Technol. 38, 216–222.

  53. M. N. Asl, N. M. Mahmodi, P. Teymouri, B. Shahmoradi, R. Rezaee, and A. Maleki (2016). Desalin. Water. Treat. 57, 25278–25287.

    Article  CAS  Google Scholar 

  54. R. D. Kale and P. B. Kane (2019). Groundw. Sustain. Dev. 8, 309–318.

    Google Scholar 

  55. T. S. Kim, H. J. Song, M. A. Dar, H. J. Lee, and D. W. Kim (2018). Appl. Surf. Sci. 439, 364–370.

    Article  CAS  Google Scholar 

  56. S. Sharma, A. Hasan, N. Kumar, and L. M. Pandey (2018). Environ. Sci. Pollut. Res. 25, 21605–21615.

    Article  CAS  Google Scholar 

  57. A. U. Rajapaksha, S. S. Chen, D. C. Tsang, M. Zhang, M. Vithanage, S. Mandal, B. Gao, N. S. Bolan, and Y. S. Ok (2016). Chemosphere. 148, 276–291.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the UGC for providing scholarship during the study period to MYR. The authors are thankful to Central Instrumentation Facility, Pondicherry University for Fourier transform infrared and Transmission electron microscopy analysis, and the Centre for Nanoscience and Nanotechnology for X-ray diffraction characterization. We acknowledge the help of Mr. Mannmohan, Ph.D. Scholar, Centre for Pollution Control and Environmental Engineering, Pondicherry University.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somaiah Sundarapandian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rather, M.Y., Sundarapandian, S. Facile Green Synthesis of Copper Oxide Nanoparticles and Their Rhodamine-b Dye Adsorption Property. J Clust Sci 33, 925–933 (2022). https://doi.org/10.1007/s10876-021-02025-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02025-4

Keywords

Navigation