Skip to main content

Advertisement

Log in

Recent Advances in Rechargeable Batteries with Prussian Blue Analogs Nanoarchitectonics

  • Review Paper
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Sustainable energy storage system requires high-performance rechargeable batteries with earth-abundant elements and cost-effective electrodes. Prussian blue (PB) and its analogs (PBAs) are a large family of materials with open frameworks. Benefiting from nanoarchitectonics, the PBAs are receiving great attention as cathodic materials for various rechargeable batteries. In this review, we present a general summary and evaluation on the recent advances of PBAs for the rechargeable batteries applications. The general synthetic methods and the chemical properties of PBAs have also been discussed. This review aims to provide a brief outlook on the current and future research strategies of PBAs in the electrochemical energy storage.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright 2019, Royal Society of Chemistry) b Schematic of reaction mechanism of yolk-shell structured K0.86Mn[Fe(CN)6]0.74·2.35H2O. (Reprinted with permission [50] Copyright 2019, Elsevier)

Fig. 2
Fig. 3

Copyright 2017, Elsevier) d NiFe PBA, e CuFe PBA, (Reprinted with permission [69] Copyright 2017, Elsevier) f ZnFe PBA. (Reprinted with permission [71] Copyright 2012, Royal Society of Chemistry)

Fig. 4

Copyright 2019, Elsevier). b Na1.38Mn[Fe(CN)6]0.92∙□0.08·2.57H2O. (Reprinted with permission [67] Copyright 2019, Wiley)

Fig. 5

Copyright 2019, Elsevier). b Diagrammatic phase transition of rhombohedral Na1.34Ni[Fe(CN)6]0.81. (Reprinted with permission [78] Copyright 2019, American Chemical Society) (c) Monoclinic phase Na1.48Ni[Fe(CN)6]0.89·2.87H2O stemmed from Rietveld refinements. (Reprinted with permission [49] Copyright 2019, Wiley)

Fig. 6

Copyright 2019, Wiley). b scheme of mesoframe and schematic crystal structure for Na2Ni[Fe(CN)6. (Reprinted with permission [13] Copyright 2018, under the terms of the Creative Commons Attribution 4.0 License, published by Multidisciplinary Digital Publishing Institute). c Charge/discharge profiles the Na2Ni0.4Co0.6[Fe(CN)6] material. (Reprinted with permission [83] Copyright 2017, American Chemical Society)

Fig. 7

Copyright 2019, American Chemical Society). b Galvanostatic charge/discharge curves of K1.63Ni0.05Fe0.95[Fe(CN)6]0.92·0.42H2O. (Reprinted with permission [89] Copyright 2019, American Chemical Society). c Illustration scheme and long cycling performance at 1000 mA g−1 of K0.68Fe[Fe(CN)6]0.860.14·1.68H2O. (Reprinted with permission [90] Copyright 2019, American Chemical Society)

Fig. 8

Copyright 2019, American Chemical Society)

Fig. 9

Copyright 2019, nature research). b K2NiFe(CN)6·1.2H2O. (Reprinted with permission [96] Copyright 2018, Wiley)

Similar content being viewed by others

References

  1. B. Dunn, H. Kamath, J.M. Tarascon, Science 334, 928–935 (2011)

    CAS  PubMed  Google Scholar 

  2. Z. Yang, J. Zhang, M.C. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu. Chem. Rev. 111, 3577–3613 (2011)

    CAS  Google Scholar 

  3. M. Pasta, C.D. Wessells, R.A. Huggins, Y. Cui, Nat. commun. 3, 1149 (2012)

    PubMed  Google Scholar 

  4. J.Y. Hwang, S.T. Myung, Y.K. Sun, Chem. Soc. Rev. 46, 3529–3614 (2017)

    CAS  PubMed  Google Scholar 

  5. W. Zhang, X. Jiang, X. Wang, Y.V. Kaneti, Y. Chen, J. Liu, J.S. Jiang, Y. Yamauchi, M. Hu, Angew. Chem. Int. Ed. Engl. 56, 8435–8440 (2017)

    CAS  PubMed  Google Scholar 

  6. W. Li, J.R. Dahn, D.S. Wainwright, Science 264, 1115–1118 (1994)

    CAS  PubMed  Google Scholar 

  7. Y. Nishi, J. Power Sources. 100, 101–106 (2001)

    CAS  Google Scholar 

  8. G.L. Soloveichik, Annu. Rev. Chem. Biomol. Eng. 2, 503–527 (2011)

    CAS  PubMed  Google Scholar 

  9. H.L. Pan, Y.S. Hu, L.Q. Chen, Energy Environ. Sci. 6, 2338–2360 (2013)

    CAS  Google Scholar 

  10. M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Adv. Funct. Mater. 23, 947–958 (2013)

    CAS  Google Scholar 

  11. R. Rajagopalan, Y. Tang, X. Ji, C. Jia, H. Wang, Adv. Funct. Mater. 30, 1909486 (2020)

    CAS  Google Scholar 

  12. M. Mao, T. Gao, S. Hou, C. Wang, Chem. Soc. Rev. 47, 8804–8841 (2018)

    CAS  PubMed  Google Scholar 

  13. H. Sun, W. Zhang, M. Hu, Crystals 8, 23 (2018)

    Google Scholar 

  14. X. Guo, Z. Wang, Z. Deng, X. Li, B. Wang, X. Chen, S.P. Ong, Chem. Mater. 31, 5933–5942 (2019)

    CAS  Google Scholar 

  15. D. Su, A. McDonagh, S.-Z. Qiao, G. Wang, Adv. Mater. 29, 1604007 (2017)

    Google Scholar 

  16. Y.V. Kaneti, J. Zhang, Y.B. He, Z.J. Wang, S. Tanaka, M.S.A. Hossain, Z.Z. Pan, B. Xiang, Q.H. Yang, Y. Yamauchi, J. Mater. Chem. A 5, 15356–15366 (2017)

    CAS  Google Scholar 

  17. Q. Dang, Y. Li, W. Zhang, Y.V. Kaneti, M. Hu, Y. Yamauchi, Chin. Chem. Lett. (2020). https://doi.org/10.1016/j.cclet.2020.04.053

    Article  Google Scholar 

  18. J. Tang, R.R. Salunkhe, H. Zhang, V. Malgras, T. Ahamad, S.M. Alshehri, N. Kobayashi, S. Tominaka, Y. Ide, J.H. Kim, Y. Yamauchi, Sci Rep 6, 30295 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  19. C. Wang, J. Kim, J. Tang, J. Na, Y.M. Kang, M. Kim, H. Lim, Y. Bando, J. Li, Y. Yamauchi, Angew. Chem. Int. Ed. Engl. 59, 2066–2070 (2020)

    CAS  PubMed  Google Scholar 

  20. B. Wang, Y. Han, X. Wang, N. Bahlawane, H. Pan, M. Yan, Science 3, 110–133 (2018)

    CAS  Google Scholar 

  21. F. Feng, S. Chen, X.Z. Liao, Z.F. Ma, Small Methods 3, 1800259 (2018)

    Google Scholar 

  22. Y. Huang, M. Xie, Z. Wang, Y. Jiang, Y. Yao, S. Li, Z. Li, L. Li, F. Wu, R. Chen, Small 14, 1801246 (2018)

    Google Scholar 

  23. H.J. Buser, D. Schwarzenbach, W. Petter, A. Ludi, Inorg. Chem. 16, 2704–2710 (1977)

    CAS  Google Scholar 

  24. F. Herren, P. Fischer, A. Ludi, W. Haelg, Inorg. Chem. 19, 956–959 (1980)

    CAS  Google Scholar 

  25. T. Matsuda, J.E. Kim, K. Ohoyama, Y. Moritomo, Phys. Rev. B 79, 172302 (2009)

    Google Scholar 

  26. C.D. Wessells, M.T. McDowell, S.V. Peddada, M. Pasta, R.A. Huggins, Y. Cui, ACS Nano 6, 1688–1694 (2012)

    CAS  PubMed  Google Scholar 

  27. C.F. Wang, W. Zhang, W.W. Li, Y.Y. Zhang, X.D. Tang, M. Hu, Chin. Chem. Lett. 30, 1390–1392 (2019)

    CAS  Google Scholar 

  28. Q. Fang, W. Zhang, X.H. Chen, Y.J. Zhang, M. Hu, Chin. Chem. Lett. 31, 303–306 (2020)

    CAS  Google Scholar 

  29. W. Zhang, W. Chen, X. Zhao, Q. Dang, Y. Li, T. Shen, F. Wu, L. Tang, H. Jiang, M. Hu, Angew. Chem. Int. Ed. Engl. 58, 7431–7434 (2019)

    CAS  PubMed  Google Scholar 

  30. H.W. Lee, R.Y. Wang, M. Pasta, S. Woo Lee, N. Liu, Y. Cui, Nat. Commun. 5, 5280 (2014)

    CAS  PubMed  Google Scholar 

  31. M.B. Robin, Inorg. Chem. 1, 337–342 (1962)

    CAS  Google Scholar 

  32. V.D. Neff, J. Electrochem. Soc. 132, 1382–1384 (1985)

    CAS  Google Scholar 

  33. E.W. Grabner, S. Kalwellis-Mohn, J. Appl. Electrochem. 17, 653–656 (1987)

    CAS  Google Scholar 

  34. M. Kaneko, T. Okada, J. Electroanal. Chem. 255, 45–52 (1988)

    CAS  Google Scholar 

  35. C.D. Wessells, R.A. Huggins, Y. Cui, Nat. Commun. 2, 550 (2011)

    PubMed  Google Scholar 

  36. C.D. Wessells, S.V. Peddada, R.A. Huggins, Y. Cui, Nano Lett. 11, 5421–5425 (2011)

    CAS  PubMed  Google Scholar 

  37. A. Azhar, Y.C. Li, Z.X. Cai, M.B. Zakaria, M.K. Masud, M.S.A. Hossain, J. Kim, W. Zhang, J. Na, Y. Yamauchi, M. Hu, Bull. Chem. Soc. Jpn. 92, 875–904 (2019)

    CAS  Google Scholar 

  38. C.H. Wang, J. Kim, J. Tang, M. Kim, H. Lim, V. Malgras, J. You, Q. Xu, J.S. Li, Y. Yamauchi, Chem 6, 19–40 (2020)

    CAS  Google Scholar 

  39. Y. Zhao, W. Zhang, M. Hu, ChemNanoMat 3, 780–789 (2017)

    CAS  Google Scholar 

  40. J. Chen, L. Wei, A. Mahmood, Z. Pei, Z. Zhou, X. Chen, Y. Chen, Energy Storage Mater. 25, 585–612 (2020)

    Google Scholar 

  41. J. Qian, C. Wu, Y. Cao, Z. Ma, Y. Huang, X. Ai, H. Yang, Adv. Energy Mat. 8, 1702619 (2018)

    Google Scholar 

  42. M.B. Zakaria, T. Chikyow, Coord. Chem. Rev. 352, 328–345 (2017)

    CAS  Google Scholar 

  43. W. Li, Y. Li, W. Zhang, D. Yin, Y. Cheng, W. Chu, M. Hu, Chin. Chem. Lett. (2020). https://doi.org/10.1016/j.cclet.2020.09.039

    Article  Google Scholar 

  44. W.J. Li, C. Han, G. Cheng, S.L. Chou, H.K. Liu, S.X. Dou, Small 15, e1900470 (2019)

    PubMed  Google Scholar 

  45. C. Si, Y. Wu, Y. Sun, Q. Liu, L. Tang, X. Zhang, J. Guo. Electrochim. Acta 309, 116–124 (2019)

    CAS  Google Scholar 

  46. M. Hu, N.L. Torad, Y. Yamauchi, Eur. J. Inorg. Chem. 2012, 4795–4799 (2012)

    CAS  Google Scholar 

  47. J.-H. Lee, G. Ali, D.H. Kim, K.Y. Chung, Adv. Energy Mater. 7, 1601491 (2017)

    Google Scholar 

  48. T. Shao, C. Li, C. Liu, W. Deng, W. Wang, M. Xue, R. Li, J. Mater. Chem. A 7, 1749–1755 (2019)

    CAS  Google Scholar 

  49. Y. Xu, J. Wan, L. Huang, M. Ou, C. Fan, P. Wei, J. Peng, Y. Liu, Y. Qiu, X. Sun, C. Fang, Q. Li, J. Han, Y. Huang, J.A. Alonso, Y. Zhao, Adv. Energy Mater. 9, 1803158 (2019)

    Google Scholar 

  50. W. Ye, L. Yu, M. Sun, G. Cheng, S. Fu, S. Peng, S. Han, X. Yang, Electrochim. Acta 319, 237–244 (2019)

    CAS  Google Scholar 

  51. H. Ming, N.L.K. Torad, Y.-D. Chiang, K.C.W. Wu, Y. Yamauchi, CrystEngComm 14, 3387 (2012)

    CAS  Google Scholar 

  52. C. Li, X. Wang, W. Deng, C. Liu, J. Chen, R. Li, M. Xue, ChemElectroChem 5, 3887–3892 (2018)

    CAS  Google Scholar 

  53. J. Wang, L. Li, S. Zuo, Y. Zhang, L. Lv, R. Ran, X. Li, B. Li, F. Zhao, J. Zhang, Y. Wang, P. Nie, Electrochim. Acta 341, 136057 (2020)

    CAS  Google Scholar 

  54. M. Qin, W. Ren, J. Meng, X. Wang, X. Yao, Y. Ke, Q. Li, L. Mai, ACS Sustainable Chem. Eng. 7, 11564–11570 (2019)

    CAS  Google Scholar 

  55. H.C. Yi, R.Z. Qin, S.X. Ding, Y.T. Wang, S.N. Li, Q.H. Zhao, F. Pan, Adv. Funct. Mater. 76, 2006970 (2020)

    Google Scholar 

  56. C. Chen, W. Zhang, Y. Hong, Z. Le, Q. Li, W. Li, M. Hu, Chem. Commun. 55, 2545–2548 (2019)

    CAS  Google Scholar 

  57. Y.C. Li, Q. Dang, C.J. Shi, W. Zhang, C.B. Jing, X. Li, M. Hu, J. Mater. Chem. A 7, 23084–23090 (2019)

    CAS  Google Scholar 

  58. W. Zhang, J. Chu, M. Hu, Chem Asian J. 15, 1202–1213 (2020)

    CAS  PubMed  Google Scholar 

  59. Y.Y. Zhao, X. Li, M. Hu, Chin. Chem. Lett. 30, 630–633 (2019)

    CAS  Google Scholar 

  60. K. Hurlbutt, S. Wheeler, I. Capone, M. Pasta, Joule 2, 1950–1960 (2018)

    CAS  Google Scholar 

  61. X. Bie, K. Kubota, T. Hosaka, K. Chihara, S. Komaba, J. Power Sources 378, 322–330 (2018)

    CAS  Google Scholar 

  62. D. Asakura, M. Okubo, Y. Mizuno, T. Kudo, H.S. Zhou, K. Ikedo, T. Mizokawa, A. Okazawa, N. Kojima, J. Phys. Chem. C 116, 8364–8369 (2012)

    CAS  Google Scholar 

  63. L. Wang, Y. Lu, J. Liu, M. Xu, J. Cheng, D. Zhang, J.B. Goodenough, Angew. Chem. Int. Ed. Engl. 52, 1964–1967 (2013)

    CAS  PubMed  Google Scholar 

  64. Y. Lu, L. Wang, J. Cheng, J.B. Goodenough, Chem. Commun. 48, 6544–6546 (2012)

    CAS  Google Scholar 

  65. Y. You, X.L. Wu, Y.X. Yin, Y.G. Guo, Energy Environ. Sci. 7, 1643–1647 (2014)

    CAS  Google Scholar 

  66. J. Song, L. Wang, Y. Lu, J. Liu, B. Guo, P. Xiao, J.J. Lee, X.Q. Yang, G. Henkelman, J.B. Goodenough, J. Am. Chem. Soc. 137, 2658–2664 (2015)

    CAS  PubMed  Google Scholar 

  67. Y. Tang, W. Li, P. Feng, M. Zhou, K. Wang, Y. Wang, K. Zaghib, K. Jiang, Adv. Funct. Mater. 30, 1908754 (2020)

    CAS  Google Scholar 

  68. H. Gao, S. Xin, L. Xue, J.B. Goodenough, Chem 4, 833–844 (2018)

    CAS  Google Scholar 

  69. X. Wu, Z. Jian, Z. Li, X. Ji, Electrochem. Commun. 77, 54–57 (2017)

    CAS  Google Scholar 

  70. M. Takachi, T. Matsuda, Y. Moritomo, Jpn. J. Appl. Phys. 52, 090202 (2013)

    Google Scholar 

  71. H. Lee, Y.I. Kim, J.K. Park, J.W. Choi, Chem. Commun. 48, 8416–8418 (2012)

    CAS  Google Scholar 

  72. Y. Fang, Z. Chen, L. Xiao, X. Ai, Y. Cao, H. Yang, Small 14, 1703116 (2018)

    Google Scholar 

  73. Y. Fang, L. Xiao, Z. Chen, X. Ai, Y. Cao, H. Yang, Electrochem. Energy Rev. 1, 294–323 (2018)

    CAS  Google Scholar 

  74. C. Yan, A. Zhao, F. Zhong, X. Feng, W. Chen, J. Qian, X. Ai, H. Yang, Y. Cao, Electrochim. Acta 332, 135533 (2020)

    CAS  Google Scholar 

  75. L. Yang, Q. Liu, M. Wan, J. Peng, Y. Luo, H. Zhang, J. Ren, L. Xue, W. Zhang, J. Power Sources 448, 227421 (2020)

    CAS  Google Scholar 

  76. B. Xie, P. Zuo, L. Wang, J. Wang, H. Huo, M. He, J. Shu, H. Li, S. Lou, G. Yin, Nano Energy 61, 201–210 (2019)

    CAS  Google Scholar 

  77. Y. Xu, M. Ou, Y. Liu, J. Xu, X. Sun, C. Fang, Q. Li, J. Han, Y. Huang, Nano Energy 67, 104250 (2020)

    CAS  Google Scholar 

  78. B. Xie, L. Wang, J. Shu, X. Zhou, Z. Yu, H. Huo, Y. Ma, X. Cheng, G. Yin, P. Zuo, ACS Appl. Mater. Interfaces 11, 46705–46713 (2019)

    CAS  PubMed  Google Scholar 

  79. X. Wu, C. Wu, C. Wei, L. Hu, J. Qian, Y. Cao, X. Ai, J. Wang, H. Yang, ACS Appl. Mater. Interfaces 8, 5393–5399 (2016)

    CAS  PubMed  Google Scholar 

  80. Q. Yang, W. Wang, H. Li, J. Zhang, F. Kang, B. Li, Electrochim. Acta 270, 96–103 (2018)

    CAS  Google Scholar 

  81. L. Jiang, L. Liu, J. Yue, Q. Zhang, A. Zhou, O. Borodin, L. Suo, H. Li, L. Chen, K. Xu, Y.S. Hu, Adv. Mater. 32, 1904427 (2020)

    CAS  Google Scholar 

  82. W. Li, F. Zhang, X. Xiang, X. Zhang, ChemElectroChem 4, 2870–2876 (2017)

    CAS  Google Scholar 

  83. W.F. Li, F. Zhang, X.D. Xiang, X.C. Zhang, J. Phys. Chem. C 121, 27805–27812 (2017)

    CAS  Google Scholar 

  84. B. Paulitsch, J. Yun, A.S. Bandarenka, ACS Appl. Mater. Interfaces. 9, 8107–8112 (2017)

    CAS  PubMed  Google Scholar 

  85. K. Kubota, M. Dahbi, T. Hosaka, S. Kumakura, S. Komaba, Chem. Rec. 18, 459–479 (2018)

    CAS  PubMed  Google Scholar 

  86. G. He, L.F. Nazar, ACS Energy Lett. 2, 1122–1127 (2017)

    CAS  Google Scholar 

  87. M. Xie, M. Xu, Y. Huang, R. Chen, X. Zhang, L. Li, F. Wu, Electrochem. Commun. 59, 91–94 (2015)

    CAS  Google Scholar 

  88. Y. Luo, B. Shen, B. Guo, L. Hu, Q. Xu, R. Zhan, Y. Zhang, S. Bao, M. Xu, J. Phys. Chem. Solids 122, 31–35 (2018)

    CAS  Google Scholar 

  89. B. Huang, Y. Liu, Z. Lu, M. Shen, J. Zhou, J. Ren, X. Li, S. Liao, ACS Sustain. Chem. Eng. 7, 16659–16667 (2019)

    CAS  Google Scholar 

  90. Q. Xue, L. Li, Y. Huang, R. Huang, F. Wu, R. Chen, ACS Appl. Mater. Interfaces. 11, 22339–22345 (2019)

    CAS  PubMed  Google Scholar 

  91. X. Bie, K. Kubota, T. Hosaka, K. Chihara, S. Komaba, J. Mater. Chem. A 5, 4325–4330 (2017)

    CAS  Google Scholar 

  92. Y. Sun, C. Liu, J. Xie, D. Zhuang, W. Zheng, X. Zhao, New J. Chem. 43, 11618–11625 (2019)

    CAS  Google Scholar 

  93. B. Huang, Y. Shao, Y. Liu, Z. Lu, X. Lu, S. Liao, ACS Appl. Energy Mater. 2, 6528–6535 (2019)

    CAS  Google Scholar 

  94. J.W. Heo, M.S. Chae, J. Hyoung, S.T. Hong, Inorg. Chem. 58, 3065–3072 (2019)

    CAS  PubMed  Google Scholar 

  95. L. Jiang, Y. Lu, C. Zhao, L. Liu, J. Zhang, Q. Zhang, X. Shen, J. Zhao, X. Yu, H. Li, X. Huang, L. Chen, Y.-S. Hu, Nat. Energy 4, 495–503 (2019)

    CAS  Google Scholar 

  96. W. Ren, X. Chen, C. Zhao, Adv. Energy Mater. 8, 1801413 (2018)

    Google Scholar 

  97. S. Gheytani, Y. Liang, F. Wu, Y. Jing, H. Dong, K.K. Rao, X. Chi, F. Fang, Y. Yao, Adv. Sci. 4, 1700465 (2017)

    Google Scholar 

  98. M. Rashad, M. Asif, Y. Wang, Z. He, I. Ahmed, Energy Storage Materials 25, 342–375 (2020)

    Google Scholar 

  99. P. Saha, M.K. Datta, O.I. Velikokhatnyi, A. Manivannan, D. Alman, P.N. Kumta, Prog. Mater Sci. 66, 1–86 (2014)

    CAS  Google Scholar 

  100. Y. Mizuno, M. Okubo, E. Hosono, T. Kudo, K. Oh-ishi, A. Okazawa, N. Kojima, R. Kurono, S. Nishimura, A. Yamada, J. Mater. Chem. A 1, 13055–13059 (2013)

    CAS  Google Scholar 

  101. L. Chen, J.L. Bao, X. Dong, D.G. Truhlar, Y. Wang, C. Wang, Y. Xia, ACS Energy Lett. 2, 1115–1121 (2017)

    CAS  Google Scholar 

  102. P. Marzak, M. Kosiahn, J. Yun, A.S. Bandarenka, Electrochim. Acta 307, 157–163 (2019)

    CAS  Google Scholar 

  103. D.M. Kim, Y. Kim, D. Arumugam, S.W. Woo, Y.N. Jo, M.S. Park, Y.J. Kim, N.S. Choi, K.T. Lee, ACS Appl. Mater. Interfaces 8, 8554–8560 (2016)

    CAS  PubMed  Google Scholar 

  104. C. Lee, S.-K. Jeong, Chem. Lett. 45, 1447–1449 (2016)

    CAS  Google Scholar 

  105. C. Lee, S.-K. Jeong, Electrochim. Acta 265, 430–436 (2018)

    CAS  Google Scholar 

  106. M. Adil, A. Sarkar, A. Roy, M.R. Panda, A. Nagendra, S. Mitra, ACS Appl. Mater. Interfaces 12, 11489–11503 (2020)

    CAS  PubMed  Google Scholar 

  107. N. Kuperman, P. Padigi, G. Goncher, D. Evans, J. Thiebes, R. Solanki, J. Power Sources 342, 414–418 (2017)

    CAS  Google Scholar 

  108. C. Xu, B. Li, H. Du, F. Kang, Angew. Chem. Int. Ed. 51, 933–935 (2012)

    CAS  Google Scholar 

  109. L. Zhang, L. Chen, X. Zhou, Z. Liu, Sci. Rep. 5, 18263 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  110. R. Trócoli, G. Kasiri, F. La Mantia, J. Power Sources 400, 167–171 (2018)

    Google Scholar 

  111. J. Lim, G. Kasiri, R. Sahu, K. Schweinar, K. Hengge, D. Raabe, F. La Mantia, C. Scheu, Chemistry 26, 4917–4922 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  112. L. Ma, S. Chen, C. Long, X. Li, Y. Zhao, Z. Liu, Z. Huang, B. Dong, J.A. Zapien, C. Zhi, Adv. Energy Mater. 9, 1902446 (2019)

    CAS  Google Scholar 

  113. S. Liu, G.L. Pan, G.R. Li, X.P. Gao, J. Mater. Chem. A 3, 959–962 (2015)

    CAS  Google Scholar 

  114. A. Holland, R.D. McKerracher, A. Cruden, R.G.A. Wills, J. Appl. Electrochem. 48, 243–250 (2018)

    CAS  Google Scholar 

  115. Y. Gao, H. Yang, X. Wang, Y. Bai, N. Zhu, S. Guo, L. Suo, H. Li, H. Xu, C. Wu, Chemsuschem 13, 732–740 (2020)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors of this work gratefully appreciate the financial support provided by National Natural Science Foundation of China (Grant Nos. 41573096, 21707064), Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT_17R71), Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (Grant QD2019005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenqian Chen, Liang Tang or Ming Hu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Dang, Q., Chen, W. et al. Recent Advances in Rechargeable Batteries with Prussian Blue Analogs Nanoarchitectonics. J Inorg Organomet Polym 31, 1877–1893 (2021). https://doi.org/10.1007/s10904-021-01886-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-01886-6

Keywords

Navigation