Skip to main content
Log in

Manganese Metal–Organic Framework: Chemical Stability, Photoluminescence Studies, and Biosensing Application

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Innovative diagnostic tools, new approaches, and novel methodologies for monitoring and quantification of biological biomarkers have become a dominant challenge. In this work, a novel fast, facile, accurate, selective, and ultra-sensitivity optical approach for troponin I (cTn) cardiac biomarker. cTn, is used as an early diagnostic test for the patients of myocardial infarction. It can support the accurate decisions in the absolute necessity cases. Herein, a manganese metal–organic framework “Mn-MOF” was synthesized via a facile route. The structural and morphology of the produced MOF was confirmed using several tools of characterizations. The chemical stability and photoluminescence (PL) studies of the Mn-MOF were investigated to elucidate the availability of using Mn-MOF as optical biosensor for cTn. Mn-MOF exhibited a characteristic photoluminescence (PL) emission (λem = 422 nm) that was blue-shifted and encountered a remarkable reduction in intensity in presence of cTn (i.e., PL quenching agent). According to Stern-Völmer equation, a linear [cTn]-quenching relationship was observed over a wide concentration range of cTn (1.0 fg- 30.0 pg/mL) and linear range between 1.0 fg and 0.025 ng/mL. The limit of quantitation (LOQ) and detection (LOD) for the method ware estimated to be 30.0 fg/mL and 10.0 fg/mL, respectively. Based on the present optical approach; the Mn-MOF can be used successfully as a cTn-biosensor in biological samples, even the presence of different interfering analytes. The mechanism of quenching was studied, and the results revealed that the dynamic type was achieved.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S.M. Sheta, M.A. Akl, E. Saad, E.R.H. El-gharkawy, RSC Adva. 10, 5853 (2020)

    CAS  Google Scholar 

  2. S.M. Sheta, S.M. El-sheikh, D.I. Osman, A.M. Salem, O.I. Ali, F.A. Harraz, W.G. Shousha, M.A. Shoeib, S.M. Shawky, D.D. Dionysiou, Dalt. Trans 49, 8918 (2020)

    CAS  Google Scholar 

  3. C.S. Kosack, A. Page, P.R. Klatser, Bull World Heal. Organ 95, 639 (2017)

    Google Scholar 

  4. S.M. Sheta, S.M. El-Sheikh, M.M. Abd-Elzaher, S.R. Salem, H.A. Moussa, R.M. Mohamed, I.A. Mkhalid, Appl Organometal Chem. 33, e5249 (2019)

    CAS  Google Scholar 

  5. A.E. Murillo, L. Melo-Máximo, B. García-Farrera, O.S. Martínez, D.V. Melo-Máximo, J. Oliva-Ramírez, K. García, L. Huerta, J. Oseguera, J. Mater. Res. Technol. 8, 350 (2019)

    CAS  Google Scholar 

  6. G. Raman, E.E. Avendano, M. Chen, Update on Emerging Genetic Tests Currently Available for Clinical Use in Common Cancers (Agency for Healthcare Research and Quality, Tufts Evid, Technology Assessment Report. Tufts Evidence-Based Practice Center. Rockville, 2013).

    Google Scholar 

  7. P.R. Billings, Nat. Biotechnol. 24, 917 (2006)

    CAS  PubMed  Google Scholar 

  8. D.I. Osman, S.M. El-sheikh, S.M. Sheta, O.I. Ali, A.M. Salem, W. Gh, S.F. El-khamisy, S.M. Shawky, Biosens. Bioelectron. 141, 111451 (2019)

    CAS  PubMed  Google Scholar 

  9. U. Rohr, C. Binder, T. Dieterle, F. Giusti, G.M. Messina, E. Toerien, H. Moch, H.H. Schäfer, PLoS ONE 11, e0149856 (2016)

    PubMed  PubMed Central  Google Scholar 

  10. M.M. Otani, E. Vinelli, L.V. Kirchhoff, A. Pozo, A. Sands, G. Vercauteren, E.C. Sabino, Transfusion 49, 1076 (2009)

    PubMed  Google Scholar 

  11. C.C. Boehme, M.P. Nicol, P. Nabeta, J.S. Michael, E. Gotuzzo, R. Tahirli, M.T. Gler, R. Blakemore, W. Worodria, C. Gray, L. Huang, T. Caceres, R. Mehdiyev, L. Raymond, A. Whitelaw, K. Sagadevan, H. Alexander, H. Albert, F. Cobelens, H. Cox, D. Alland, M.D. Perkins, Lancet 377, 1495 (2011)

    PubMed  PubMed Central  Google Scholar 

  12. M. Mori, R. Ravinetto, J. Jacobs, Trop Med Int Heal. 16, 1439 (2014)

    Google Scholar 

  13. C.J. Shiff, Z. Premji, I. Diseases, Trans. R. Soc. Trop. Med. Hyg. 87, 646 (1993)

    CAS  PubMed  Google Scholar 

  14. B.F. Hoskins, R. Robso, J. Am. Chem. Soc. 111, 5962 (1989)

    CAS  Google Scholar 

  15. O.M. Yaghi, U.S. Pat. 5, 648 (1997)

    Google Scholar 

  16. O.M. Yaghi, G. Li, H. Li, Nature 378, 703 (1995)

    CAS  Google Scholar 

  17. A.S. Basaleh, S.M. Sheta, Anal Bioanal Chem 412, 3153 (2020)

    CAS  PubMed  Google Scholar 

  18. M. Bilal, M. Adeel, T. Rasheed, H.M.N. Iqbal, J. Mater. Res. Technol. 8, 2359 (2019)

    CAS  Google Scholar 

  19. S.M. El-Dafrawy, R.S. Salama, S.A. El-Hakam, S.E. Samra, J. Mater. Res. Technol. 9, 1998 (2020)

    CAS  Google Scholar 

  20. A. Zulys, F. Yulia, A. Buhori, N. Muhadzib, M. Ghiyats, B.B. Saha, J. Mater. Res. Technol. 9, 7409 (2020)

    Google Scholar 

  21. J. Liang, A. Nuhnen, S. Millan, H. Breitzke, V. Gvilava, G. Buntkowsky, C. Janiak, Angew. Chem. Int. Ed. 59, 6068 (2020)

    CAS  Google Scholar 

  22. S. Go, S. Ernst, E. Hastu, M. Mo, I. El Aita, R. Wiedey, N. Tannert, S. Nießing, S. Abdpour, A. Schmitz, J. Quodbach, G. Fu, S.K. Henninger, C. Janiak, Ind. Eng. Chem. Res. 58, 21493–21503 (2019)

    Google Scholar 

  23. Y. Shen, B. Shan, B. Mu, S. Tongay, Angew. Chem. Int. Ed. (2020). https://doi.org/10.1002/anie.202002705

    Article  Google Scholar 

  24. S.M. Sheta, S.M. El-Sheikh, M.M. Abd-Elzaher, A.R. Wassel, Appl Organometal Chem. 33, e4777 (2019)

    Google Scholar 

  25. A. Bhunia, S. Dey, J.M.J.M. Moreno, U. Diaz, P. Concepcion, K. Van Hecke, C. Janiak, P. Van Der Voort, Chem. Commun. 52, 1401 (2016)

    CAS  Google Scholar 

  26. S.M. Sheta, S.M. El-Sheikh, M.M. Abd-Elzaher, Anal. Bioanal. Chem. 411, 1339 (2019)

    CAS  PubMed  Google Scholar 

  27. F. Jeremias, V. Lozan, S.K. Henninger, C. Janiak, Dalt. Trans. 42, 15967 (2013)

    CAS  Google Scholar 

  28. S.M. Sheta, S.M. El-Sheikh, M.M. Abd-Elzaher, Dalt. Trans. 47, 4847 (2018)

    CAS  Google Scholar 

  29. D. Skoda, T. Kazda, L. Munster, B. Hanulikova, A. Styskalik, P. Eloy, D.P. Debecker, P. Vyroubal, J Mater Sci 54, 14102 (2019)

    CAS  Google Scholar 

  30. X. Liu, X. Guo, R. Wang, Q. Liu, J. Mater. Chem. A 7, 2838 (2019)

    CAS  Google Scholar 

  31. M. Alhaddad, S.M. Sheta, ACS Omega (2020). https://doi.org/10.1021/acsomega.0c04249

    Article  PubMed  PubMed Central  Google Scholar 

  32. L. Yaqoob, T. Noor, N. Iqbal, H. Nasir, M. Sohail, Renew. Energy 156, 1040 (2020)

    CAS  Google Scholar 

  33. L. Yaqoob, T. Noor, N. Iqbal, H. Nasir, Catalysts 9, 856 (2019)

    CAS  Google Scholar 

  34. A. Wahab, N. Iqbal, T. Noor, S. Ashraf, M.A. Raza, A. Ahmad, U.A. Khan, RSC Adv. 10, 27728 (2020)

    CAS  Google Scholar 

  35. T. Noor, N. Zaman, H. Nasir, N. Iqbal, Z. Hussain, Electrochim. Acta 307, 1 (2019)

    CAS  Google Scholar 

  36. T. Noor, S. Pervaiz, N. Iqbal, H. Nasir, N. Zaman, Nanomaterials 10, 1601 (2020)

    CAS  PubMed Central  Google Scholar 

  37. R. Mehek, N. Iqbal, T. Noor, H. Nasir, Y. Mehmood, S. Ahmed, Electrochim. Acta (2017). https://doi.org/10.1016/j.electacta.2017.09.164

    Article  Google Scholar 

  38. S.M. Sheta, S.M. El-sheikh, M.M. Abd-elzaher, G.L. Mosaad, S.R. Salem, RSC Adva. 9, 20463 (2019)

    CAS  Google Scholar 

  39. I. Biyik, N. Isiksacan, S. Opan, F. Nihan, T. Caglar, M. Erturk, S. Yazan, M.R. Yildirim, O.F. Baycan, B. Ozalp, H. Karakurt, I.F. Akturk, Am. J. Cardiol. 121, e35 (2018)

    Google Scholar 

  40. A. Kumar, C.P. Cannon, Mayo Clin Proc. 84, 917 (2009)

    PubMed  PubMed Central  Google Scholar 

  41. X. Le Han, F.F. Tian, Y.S. Ge, F.L. Jiang, L. Lai, D.W. Li, Q.L. Yu, J. Wang, C. Lin, Y. Liu, J. Photochem. Photobiol. B Biol. 109, 1 (2012)

    CAS  Google Scholar 

  42. K. Zhao, Z. Xu, Z. He, J. Mater. Sci. 53, 13111 (2018)

    CAS  Google Scholar 

  43. A. Asghar, N. Iqbal, L. Aftab, T. Noor, B.M. Kariuki, L. Kidwell, T.L. Easun, R. Soc, Open Sci. 7, 191934 (2020)

    CAS  Google Scholar 

  44. Y. Wu, X. Song, S. Li, J. Zhang, X. Yang, P. Shen, L. Gao, R. Wei, J. Zhang, G. Xiao, J. Ind. Eng. Chem. 58, 296 (2018)

    CAS  Google Scholar 

  45. S.M. El-Sheikha, M. Rabbah, Thermochim. Acta 568, 13 (2013)

    Google Scholar 

  46. B.L. Pickwick, A.L. Pochodylo, R.L. LaDuca, Inorganica Chim. Acta. 458, 146 (2017)

    CAS  Google Scholar 

  47. M. Tang, Z. Zhou, L. Shangguan, F. Zhao, S. Liu, Talanta 180, 47 (2018)

    CAS  PubMed  Google Scholar 

  48. X. Han, H.S. Kojori, R.M. Leblanc, S.J. Kim, Anal Chem 90, 7795 (2018)

    CAS  PubMed  Google Scholar 

  49. M.E. Guillermo, C. Eugenio, Chem. Soc. Rev. 47, 533 (2018)

    Google Scholar 

  50. J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd edn. (Springer, US, 2006).

    Google Scholar 

  51. J.I. Gowda, S.T. Nandibewoor, Spectrochim. Acta-Part A Mol. Biomol Spectrosc. 124, 397 (2014)

    CAS  Google Scholar 

  52. G. Zhang, E.M. Wurtzler, X. He, M.N. Nadagouda, K.O. Shea, S.M. El-sheikh, A.A. Ismail, D. Wendell, D.D. Dionysiou, Appl. Catal. B Environ. 163, 591 (2015)

    CAS  Google Scholar 

  53. L.S. Walekar, S.P. Pawar, U.R. Kondekar, D.B. Gunjal, P.V. Anbhule, S.R. Patil, G.B. Kolekar, J. Fluoresc. 25, 1085 (2015)

    CAS  PubMed  Google Scholar 

  54. Y.-Z. Zhang, B. Zhou, Y.-X. Liu, C.-X. Zhou, X.-L. Ding, Y. Liu, J. Fluoresc. 18, 109 (2008)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, Saudi Arabia under grant no. DF-405-247-1441. The authors, therefore, acknowledge with thanks DSR for technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheta M. Sheta.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Statement of Human and Animal Rights

The human patient samples used in this study were provided by the Family Medical Laboratory, Ministry of Health, Cairo, Egypt. Informed consent was obtained. The studies were approved by the appropriate ethics committee (Ministry of Health, Egypt) and were performed in accordance with ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000 and 2008 ethical standards. We did not use the samples in any research involving human participants or research involving physical interventions on study participants or involving processing of personal data but conducted the research according to the method described in the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (docx 1222 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basaleh, A.S., Sheta, S.M. Manganese Metal–Organic Framework: Chemical Stability, Photoluminescence Studies, and Biosensing Application. J Inorg Organomet Polym 31, 1726–1737 (2021). https://doi.org/10.1007/s10904-021-01888-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-01888-4

Keywords

Navigation