Skip to main content
Log in

The rhythm of a preterm neonate’s life: ultradian oscillations of heart rate, body temperature and sleep cycles

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

The objectives are to characterize oscillations of physiological functions such as heart rate and body temperature, as well as the sleep cycle from behavioral states in generally stable preterm neonates during the first 5 days of life. Heart rate, body temperature as well as behavioral states were collected during a daily 3-h observation interval in 65 preterm neonates within the first 5 days of life. Participants were born before 32 weeks of gestational age or had a birth weight below 1500 g; neonates with asphyxia, proven sepsis or malformation were excluded. In total 263 observation intervals were available. Heart rate and body temperature were analyzed with mathematical models in the context of non-linear mixed effects modeling, and the sleep cycles were characterized with signal processing methods. The average period length of an oscillation in this preterm neonate population was 159 min for heart rate, 290 min for body temperature, and the average sleep cycle duration was 19 min. Oscillation of physiological functions as well as sleep cycles can be characterized in very preterm neonates within the first few days of life. The observed parameters heart rate, body temperature and sleep are running in a seemingly uncorrelated pace at that stage of development. Knowledge about such oscillations may help to guide nursing and medical care in these neonates as they do not yet follow a circadian rhythm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Borbely AA, Achermann P (1999) Sleep homeostasis and models of sleep regulation. J Biol Rhythms 14(6):557–568

    CAS  PubMed  Google Scholar 

  2. Borbely AA, Daan S, Wirz-Justice A, Deboer T (2016) The two-process model of sleep regulation: a reappraisal. J Sleep Res 25(2):131–143

    Article  PubMed  Google Scholar 

  3. Lunshof S, Boer K, van Hoffen G, Wolf H, Mirmiran M (1997) The diurnal rhythm in fetal heart rate in a twin pregnancy with discordant anencephaly: comparison with three normal twin pregnancies. Early Hum Dev 48(1–2):47–57

    Article  CAS  PubMed  Google Scholar 

  4. Mirmiran M, Maas YG, Ariagno RL (2003) Development of fetal and neonatal sleep and circadian rhythms. Sleep Med Rev 7(4):321–334

    Article  PubMed  Google Scholar 

  5. Ivars K, Nelson N, Theodorsson A, Theodorsson E, Strom JO, Morelius E (2017) Development of salivary cortisol circadian rhythm in preterm infants. PLoS ONE 12(8):e0182685

    Article  PubMed  PubMed Central  Google Scholar 

  6. Seron-Ferre M, Riffo R, Valenzuela GJ, Germain AM (2001) Twenty-four-hour pattern of cortisol in the human fetus at term. Am J Obstet Gynecol 184(6):1278–1283

    Article  CAS  PubMed  Google Scholar 

  7. Kennaway DJ, Stamp GE, Goble FC (1992) Development of melatonin production in infants and the impact of prematurity. J Clin Endocrinol Metab 75(2):367–369

    CAS  PubMed  Google Scholar 

  8. Mantagos S, Moustogiannis A, Makri M, Vagenakis A (1996) The effect of light on plasma melatonin levels in premature infants. J Pediatr Endocrinol Metab 9(3):387–392

    Article  CAS  PubMed  Google Scholar 

  9. Klerman EB (2005) Clinical aspects of human circadian rhythms. J Biol Rhythms 20(4):375–386

    Article  PubMed  Google Scholar 

  10. Burgess HJ, Sharkey KM, Eastman CI (2002) Bright light, dark and melatonin can promote circadian adaptation in night shift workers. Sleep Med Rev 6(5):407–420

    Article  PubMed  Google Scholar 

  11. Mirmiran M, Lunshof S (1996) Perinatal development of human circadian rhythms. Prog Brain Res 111:217–226

    Article  CAS  PubMed  Google Scholar 

  12. Lamblin MD, Walls Esquivel E, Andre M (2013) The electroencephalogram of the full-term newborn: review of normal features and hypoxic-ischemic encephalopathy patterns. Neurophysiol Clin 43(5–6):267–287

    Article  PubMed  Google Scholar 

  13. Scholle S, Beyer U, Bernhard M, Eichholz S, Erler T, Graness P et al (2011) Normative values of polysomnographic parameters in childhood and adolescence: quantitative sleep parameters. Sleep Med 12(6):542–549

    Article  PubMed  Google Scholar 

  14. Grigg-Damberger MM (2016) The visual scoring of sleep in infants 0 to 2 months of age. J Clin Sleep Med 12(3):429–445

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cremer M, Jost K, Gensmer A, Pramana I, Delgado-Eckert E, Frey U et al (2016) Immediate effects of phototherapy on sleep in very preterm neonates: an observational study. J Sleep Res 25(5):517–523

    Article  PubMed  Google Scholar 

  16. Jost K, Scherer S, De Angelis C, Buchler M, Datta AN, Cattin PC et al (2017) Surface electromyography for analysis of heart rate variability in preterm infants. Physiol Meas 39(1):015004

    Article  PubMed  Google Scholar 

  17. Jost K, Pramana I, Delgado-Eckert E, Kumar N, Datta AN, Frey U et al (2017) Dynamics and complexity of body temperature in preterm infants nursed in incubators. PLoS ONE 12(4):e0176670

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jost K, Datta AN, Frey UP, Suki B, Schulzke SM (2019) Heart rate fluctuation after birth predicts subsequent cardiorespiratory stability in preterm infants. Pediatr Res 86(3):348–354

    Article  PubMed  Google Scholar 

  19. Dollberg S, Rimon A, Atherton HD, Hoath SB (2000) Continuous measurement of core body temperature in preterm infants. Am J Perinatol 17(5):257–264

    Article  CAS  PubMed  Google Scholar 

  20. van der Spek RD, van Lingen RA, van Zoeren-Grobben D (2009) Body temperature measurement in VLBW infants by continuous skin measurement is a good or even better alternative than continuous rectal measurement. Acta Paediatr 98(2):282–285

    Article  PubMed  Google Scholar 

  21. Chakraborty A, Krzyzanski W, Jusko WJ (1999) Mathematical modeling of circadian cortisol concentrations using indirect response models: comparison of several methods. J Pharmacokinet Biopharm 27(1):23–43

    Article  CAS  PubMed  Google Scholar 

  22. Ayyar VS, Krzyzanski W, Jusko WJ (2019) Indirect pharmacodynamic models for responses with circadian removal. J Pharmacokinet Pharmacodyn 46(1):89–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lavielle M (2014) Mixed effects models for the population approach: models, tasks, methods and tools. Chapman & Hall, London

    Book  Google Scholar 

  24. Pratt W (2007) Digital image processing. Wiley, Hoboken

    Book  Google Scholar 

  25. Zhu Y, Jiang Z, Xiao G, Cheng S, Wen Y, Wan C (2015) Circadian rhythm disruption was observed in hand, foot, and mouth disease patients. Medicine 94(10):e601

    Article  PubMed  PubMed Central  Google Scholar 

  26. Stern G, Beel J, Suki B, Silverman M, Westaway J, Cernelc M et al (2009) Long-range correlations in rectal temperature fluctuations of healthy infants during maturation. PLoS ONE 4(7):e6431

    Article  PubMed  PubMed Central  Google Scholar 

  27. Griffin MP, Lake DE, Bissonette EA, Harrell FE Jr, O’Shea TM, Moorman JR (2005) Heart rate characteristics: novel physiomarkers to predict neonatal infection and death. Pediatrics 116(5):1070–1074

    Article  PubMed  Google Scholar 

  28. Moorman JR, Delos JB, Flower AA, Cao H, Kovatchev BP, Richman JS et al (2011) Cardiovascular oscillations at the bedside: early diagnosis of neonatal sepsis using heart rate characteristics monitoring. Physiol Meas 32(11):1821–1832

    Article  PubMed  PubMed Central  Google Scholar 

  29. Korotchikova I, Connolly S, Ryan CA, Murray DM, Temko A, Greene BR et al (2009) EEG in the healthy term newborn within 12 hours of birth. Clin Neurophysiol 120(6):1046–1053

    Article  CAS  PubMed  Google Scholar 

  30. Groome LJ, Swiber MJ, Atterbury JL, Bentz LS, Holland SB (1997) Similarities and differences in behavioral state organization during sleep periods in the perinatal infant before and after birth. Child Dev 68(1):1–11

    Article  CAS  PubMed  Google Scholar 

  31. McGraw K, Hoffmann R, Harker C, Herman JH (1999) The development of circadian rhythms in a human infant. Sleep 22(3):303–310

    Article  CAS  PubMed  Google Scholar 

  32. Shimada M, Segawa M, Higurashi M, Kimura R, Oku K, Yamanami S et al (2003) Effects of phototherapy in neonates on circadian sleep-wake and saliva cortisol level rhythms. J Perinat Neonatal Nurs 17(3):222–231

    Article  PubMed  Google Scholar 

  33. D’Souza SW, Tenreiro S, Minors D, Chiswick ML, Sims DG, Waterhouse J (1992) Skin temperature and heart rate rhythms in infants of extreme prematurity. Arch Dis Child 67(7 Spec No):784–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Quarteroni A, Manzoni A, Vergara C (2017) The cardiovascular system: mathematical modelling, numerical algorithms and clinical applications. J Acta Numer 26:365–590

    Article  Google Scholar 

  35. Katić K, Li R, Zeiler W (2016) Thermophysiological models and their applications: a review. Build Environ 106:286–300

    Article  Google Scholar 

  36. Rempe MJ, Best J, Terman D (2010) A mathematical model of the sleep/wake cycle. J Math Biol 60(5):615–644

    Article  PubMed  Google Scholar 

  37. Murray J (2003) Mathematical biology II—spatial models and biomedical applications. Springer, Cham

    Google Scholar 

  38. Koch G, Schropp J (2013) Mathematical concepts in pharmacokinetics and pharmacodynamics with application to tumor growth. In: Kloeden P, Pötzsche C (eds) Nonautonomous dynamical systems in the life sciences. Sprinter International, Cham

    Google Scholar 

  39. Glass L, Beuter A, Larocque D (1988) Time delays, oscillations, and chaos in physiological control systems. Math Biosci 90:111–125

    Article  Google Scholar 

  40. Koch G, Krzyzanski W, Perez-Ruixo JJ, Schropp J (2014) Modeling of delays in PKPD: classical approaches and a tutorial for delay differential equations. J Pharmacokinet Pharmacodyn 41(4):291–318

    Article  PubMed  Google Scholar 

  41. Koch G, Schropp J (2018) Delayed logistic indirect response models: realization of oscillating behavior. J Pharmacokinet Pharmacodyn 45(1):49–58

    Article  PubMed  Google Scholar 

Download references

Funding

The clinical study was supported by SNSF funding from Sven M. Schulzke: Grant Number 141206. René Koch is a scientific freelancer and joined the project without any financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilbert Koch.

Ethics declarations

Conflict of interest

Preliminary data analysis was presented as poster at an international conference. The authors have no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1201 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koch, G., Jost, K., Schulzke, S.M. et al. The rhythm of a preterm neonate’s life: ultradian oscillations of heart rate, body temperature and sleep cycles. J Pharmacokinet Pharmacodyn 48, 401–410 (2021). https://doi.org/10.1007/s10928-020-09735-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-020-09735-8

Keywords

Navigation