Skip to main content
Log in

Biocomputational Analysis and In Silico Characterization of an Angiogenic Protein (RNase5) in Zebrafish (Danio rerio)

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Several types of RNase protein has been identified and characterized from different group of organism using advanced biocomputational techniques. Some of these RNase have crucial role for understanding and discovering the practical mechanism of cellular angiogenesis. To characterize the zebrafish (Danio rerio) RNase5 for its angiogenic properties multiple modern bioinformatics tools and server applied in present research. For accurate structural profiling of RNase5 protein through Ramachandran plot of PROCHECK and ProSA-web servers were applied. Subsequently, the CABS-flex server has been introduced to compute the Route Mean Square Fluctuation of all atoms for dynamic system simulation with a minimal residue fluctuation. Prediction of RNase5 protein’s sub-cellular localization, the TMHMM server also applied and confirmed its extracellular or secretory nature. Moreover, the sequence alignment with human angiogenin protein authenticates higher level of sequence similarity and reveals the conserved regions within protein of interest. Additionally, molecular docking with very low ACE value − 131.67 between the VEGF-binding domain of FLT-1 protein and zebrafish RNase5 able to generate the effective confirmation of cellular angiogenic activity. The molecular dynamic simulation by Normal Mode Analysis (NMA) also performed for functional mobility and structural stability of docking complex. Therefore, such In silico efforts definitely support the proper understanding of RNase5 enzyme mediated angiogenic activity. This effort certainly provides like a potential aid towards the future study of angiogenesis mechanism, as an important phenomenon of cancer metastasis in vertebrate model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

RNA:

Ribonucleic acid

VEGF:

Vascular endothelial growth factor

ALS:

Amyotropic lateral sclerosis

3D:

Three dimensional

UCSF:

University of California, San Francisco

PDB:

Protein data bank

RMSF:

Root mean square fluctuation

MD:

Molecular dynamics

T-COFFEE:

Tree-based consistency objective function for alignment evaluation

ACE:

Atomic contact energy

MSA:

Multiple sequence alignment

References

  • Adams SA, Subramanian V (1999) The angiogenins: an emerging family of ribonuclease related proteins with diverse cellular functions. Angiogenesis 3:189–199

    CAS  Google Scholar 

  • Baú D, Martin AJ, Mooney C, Vullo A, Walsh I, Pollastri G (2006) Distill: a suite of web servers for the prediction of one-, two-and three-dimensional structural features of proteins. BMC Bioinform 7:402

    Google Scholar 

  • Bauer JA, Pavlović J, Bauerová-Hlinková V (2019) Normal mode analysis as a routine part of a structural investigation. Molecules 24:3293

    CAS  Google Scholar 

  • Berman HM et al (2000) The protein data bank. Nucleic Acids Res 28:235–242

    CAS  Google Scholar 

  • Bhattacharya M, Malick RC, Mondal N, Patra P, Pal BB, Patra BC, Das BK (2019) Computational characterization of epitopic region within the outer membrane protein candidate in Flavobacterium columnare for vaccine development. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2019.1580222

    Article  Google Scholar 

  • Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249

    CAS  Google Scholar 

  • Chen Y et al (2005) SPD—a web-based secreted protein database. Nucleic Acids Res 33:D169–D173

    CAS  Google Scholar 

  • Childers MC, Daggett V (2017) Insights from molecular dynamics simulations for computational protein design. Mol Syst Des Eng 2:9–33

    CAS  Google Scholar 

  • Chou K-C, Shen H-B (2006) Hum-PLoc: a novel ensemble classifier for predicting human protein subcellular localization. Biochem Biophys Res Commun 347:150–157

    CAS  Google Scholar 

  • Consortium U (2014) UniProt: a hub for protein information. Nucleic Acids Res 43:D204–D212

    Google Scholar 

  • D'Alessio G (1993) New and cryptic biological messages from RNases. Trends Cell Biol 3:106–109

    CAS  Google Scholar 

  • Davis RH (2004) The age of model organisms. Nat Rev Genet 5:69

    CAS  Google Scholar 

  • Di Tommaso P et al (2011) T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Res 39:W13–W17

    Google Scholar 

  • Duhovny D, Nussinov R, Wolfson HJ (2002) Efficient unbound docking of rigid molecules. In: International workshop on algorithms in bioinformatics. Springer, Berlin, pp 185–200

  • Edgar RC, Batzoglou S (2006) Multiple sequence alignment. Curr Opin Struct Biol 16:368–373

    CAS  Google Scholar 

  • Folkman J (1971) Tumor angiogenesis: therapeutic implications. New Engl J Med 285:1182–1186

    CAS  Google Scholar 

  • Folkman J (1984) Angiogenesis. In: Jaffe EA (ed) Biology of endothelial cells. Springer, Boston, pp 412–428

    Google Scholar 

  • Gibbs JB (2000) Mechanism-based target identification and drug discovery in cancer research. Science 287:1969–1973

    CAS  Google Scholar 

  • Hasan M et al (2019) Vaccinomics strategy for developing a unique multi-epitope monovalent vaccine against Marburg marburgvirus. Infect Genet Evol 70:140–157

    CAS  Google Scholar 

  • Horton P, Park K-J, Obayashi T, Fujita N, Harada H, Adams-Collier C, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:W585–W587

    Google Scholar 

  • Huh W-K, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O'shea EK (2003) Global analysis of protein localization in budding yeast. Nature 425:686

    CAS  Google Scholar 

  • Jamroz M, Kolinski A, Kmiecik S (2013) CABS-flex: server for fast simulation of protein structure fluctuations. Nucleic Acids Res 41:W427–W431

    Google Scholar 

  • Jamroz M, Kolinski A, Kmiecik S (2014) CABS-flex predictions of protein flexibility compared with NMR ensembles. Bioinformatics 30:2150–2154

    CAS  Google Scholar 

  • Karplus M, Petsko GA (1990) Molecular dynamics simulations in biology. Nature 347:631

    CAS  Google Scholar 

  • Kim DE, Chivian D, Baker D (2004) Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res 32:W526–W531

    CAS  Google Scholar 

  • Kishikawa H, Wu D, Hu G-f (2008) Targeting angiogenin in therapy of amyotropic lateral sclerosis. Expert Opin Ther Targets 12:1229–1242

    CAS  Google Scholar 

  • Kleywegt GJ, Jones TA (1996) Phi/psi-chology: Ramachandran revisited. Structure 4:1395–1400

    CAS  Google Scholar 

  • Krogh A, Larsson B, Von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    CAS  Google Scholar 

  • Kuriata A, Gierut AM, Oleniecki T, Ciemny MP, Kolinski A, Kurcinski M, Kmiecik S (2018a) CABS-flex 2.0: a web server for fast simulations of flexibility of protein structures. Nucleic Acids Res. https://doi.org/10.1093/nar/gky356

    Article  Google Scholar 

  • Kuriata A, Kolinski A, Kurcinski M, Kmiecik S, Oleniecki T, Ciemny MP (2018b) CABS-flex standalone: a simulation environment for fast modeling of protein flexibility. Bioinformatics. https://doi.org/10.1093/bioinformatics/bty685

    Article  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    CAS  Google Scholar 

  • Laskowski RA, MacArthur MW, Thornton JM (1998) Validation of protein models derived from experiment. Curr Opin Struct Biol 8:631–639

    CAS  Google Scholar 

  • Lassmann T, Sonnhammer EL (2005) Automatic assessment of alignment quality. Nucleic Acids Res 33:7120–7128

    CAS  Google Scholar 

  • Lavi A et al (2013) Detection of peptide-binding sites on protein surfaces: the first step toward the modeling and targeting of peptide-mediated interactions. Proteins: Struct Funct Bioinform 81:2096–2105

    CAS  Google Scholar 

  • Li H, Chang Y-Y, Lee JY, Bahar I, Yang L-W (2017) DynOmics: dynamics of structural proteome and beyond. Nucleic Acids Res 45:W374–W380

    CAS  Google Scholar 

  • López-Blanco JR, Aliaga JI, Quintana-Ortí ES, Chacón P (2014) iMODS: internal coordinates normal mode analysis server. Nucleic Acids Res 42:W271–W276

    Google Scholar 

  • Meyers JR (2018) Zebrafish: development of a vertebrate model organism. Curr Protoc Essential Lab Tech 16:e19

    Google Scholar 

  • Notredame C, Higgins DG, Heringa J (2000) T-coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217

    CAS  Google Scholar 

  • Nussey SS, Whitehead SA (2013) Endocrinology: an integrated approach. CRC Press, Boca Raton

    Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    CAS  Google Scholar 

  • Pizzo E, D'Alessio G (2007) The success of the RNase scaffold in the advance of biosciences and in evolution. Gene 406:8–12

    CAS  Google Scholar 

  • Pizzo E et al (2011) A new RNase sheds light on the RNase/angiogenin subfamily from zebrafish. Biochem J 433:345–355

    CAS  Google Scholar 

  • Raghavan V (2012) Developmental biology of flowering plants. Springer, New York

    Google Scholar 

  • Ramanathan K, Shanthi V, Sethumadhavan R (2009) In silico identification of catalytic residues in azobenzene reductase from Bacillus subtilis and its docking studies with azo dyes. Interdiscip Sci: Comput Life Sci 1:290–297

    CAS  Google Scholar 

  • Ribas L, Piferrer F (2014) The zebrafish (Danio rerio) as a model organism, with emphasis on applications for finfish aquaculture research. Rev Aquac 6:209–240

    Google Scholar 

  • Schneidman-Duhovny D et al (2003) Taking geometry to its edge: fast unbound rigid (and hinge-bent) docking. Proteins: Struct Funct Bioinform 52:107–112

    CAS  Google Scholar 

  • Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33:W363–W367

    CAS  Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65:5–29

    Google Scholar 

  • Starovasnik MA, Christinger HW, Wiesmann C, Champe MA, de Vos AM, Skelton NJ (1999) Solution structure of the VEGF-binding domain of Flt-1: comparison of its free and bound states. J Mol Biol 293:531–544

    CAS  Google Scholar 

  • Steidinger TU, Standaert DG, Yacoubian TA (2011) A neuroprotective role for angiogenin in models of Parkinson’s disease. J Neurochem 116:334–341

    CAS  Google Scholar 

  • Strydom D (1998) The angiogenins. Cell Mol Life Sci CMLS 54:811–824

    CAS  Google Scholar 

  • Su EC-Y, Chiu H-S, Lo A, Hwang J-K, Sung T-Y, Hsu W-L (2007) Protein subcellular localization prediction based on compartment-specific features and structure conservation. BMC Bioinform 8:330

    Google Scholar 

  • Waltemath D et al (2011) Reproducible computational biology experiments with SED-ML-the simulation experiment description markup language. BMC Syst Biol 5:198

    Google Scholar 

  • Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–W410

    Google Scholar 

  • Wiesmann C, Fuh G, Christinger HW, Eigenbrot C, Wells JA, de Vos AM (1997) Crystal structure at 1.7 Å resolution of VEGF in complex with domain 2 of the Flt-1 receptor. Cell 91:695–704

    CAS  Google Scholar 

  • Yu CS, Chen YC, Lu CH, Hwang JK (2006) Prediction of protein subcellular localization. Proteins: Struct Funct Bioinform 64:643–651

    CAS  Google Scholar 

Download references

Acknowledgements

This research work is supported by research project of Science for Equity Empowerment and Development (SEED), Department of Science and Technology (DST), Govt. of India (Grant No. SEED/WTP/059/2014/G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manojit Bhattacharya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research Involving Human and Animal Rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patra, P., Ghosh, P., Patra, B.C. et al. Biocomputational Analysis and In Silico Characterization of an Angiogenic Protein (RNase5) in Zebrafish (Danio rerio). Int J Pept Res Ther 26, 1687–1697 (2020). https://doi.org/10.1007/s10989-019-09978-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-019-09978-1

Keywords

Navigation