Skip to main content
Log in

Development of a growth model for aluminum-doped zinc oxide nanocrystal synthesis via the benzylamine route

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This work deals with time-resolved accessibility of suitable measurement technique to the solvothermal non-aqueous sol–gel synthesis of aluminum-doped zinc oxide (AZO) nanocrystals via the benzylamine route. Taking into account some limitations, we develop a new concept for using a lab-scale small-angle X-ray scattering (SAXS) camera to obtain detailed information about ongoing particle formation processes during AZO synthesis at the nanoscale range of 10 − 75 nm. Based on this concept, a new growth model is derived providing deep insights regarding process kinetics and morphological changes of AZO during growth. For this purpose, a new method is developed for carrying out and analyzing AZO synthesis in a low process temperature range (≪200 ° C) in order to achieve higher resolution of time-dependent particle formation processes by slowing down process speed. In detail, we show that the consumption of the zinc precursor during synthesis can be recorded by quantitative phase analysis (QPA) and thus validated with gravimetric analysis proving a pseudo-first-order process kinetics for the overall synthesis process. Taking into account the kinetics data, further transmission electron microscopy (TEM) and SAXS analyses are performed to investigate changes in terms of shape, size, and fractal properties leading into the development of a generalized growth model for AZO nanocrystals during synthesis.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ashcroft NW, Lekner J (1966) Structure and resistivity of liquid metals. Phys Rev 145:83–90

    Article  CAS  Google Scholar 

  • Beaucage G (1995) Approximations leading to a unified exponential/power-law approach to small-angle scattering. J Appl Crystallogr 28:717–728. https://doi.org/10.1107/S0021889895005292

    Article  CAS  Google Scholar 

  • Boukari H, Lin JS, Harris MT (1997) Small-angle X-ray scattering study of the formation of colloidal silica particles from alkoxides: primary particles or not? J Colloid Interface Sci 194:311–318. https://doi.org/10.1006/jcis.1997.5112

    Article  CAS  Google Scholar 

  • Cölfen H, Antonietti M (2005) Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew Chem Int Ed 44:5576–5591

    Article  Google Scholar 

  • Cushing BL, Kolesnichenko VL, O'Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946. https://doi.org/10.1021/cr030027b

    Article  CAS  Google Scholar 

  • Dalmaschio CJ, Leite ER (2012) Detachment induced by Rayleigh-instability in metal oxide nanorods: insights from TiO2. Cryst Growth Des 12:3668–3674. https://doi.org/10.1021/cg300473u

    Article  CAS  Google Scholar 

  • Ellinger CR, Nelson SF (2014) Selective area spatial atomic layer deposition of ZnO, Al2O3, and aluminum-doped ZnO using poly (vinyl pyrrolidone). Chem Mater 26:1514–1522

    Article  CAS  Google Scholar 

  • Garnweitner G, Grote C (2009) In situ investigation of molecular kinetics and particle formation of water-dispersible titania nanocrystals. Phys Chem Chem Phys 11:3767–3774

    Article  CAS  Google Scholar 

  • Garnweitner G, Tsedev N, Dierke H, Niederberger M (2008) Benzylamines as versatile agents for the one-pot synthesis and highly ordered stacking of anatase nanoplatelets. Eur J Inorg Chem 2008:890–895

    Article  Google Scholar 

  • Glatter O, Kratky O (eds) (1982) Small-angle X-ray scattering. Academic Press, New York

    Google Scholar 

  • Goertz V, Gutsche A, Dingenouts N, Nirschl H (2012) Small-angle X-ray scattering study of the formation of colloidal SiO2 stober multiplets. J Phys Chem C 116:26938–26946

    Article  CAS  Google Scholar 

  • Guo X, Gutsche A, Nirschl H (2013a) SWAXS investigations on diffuse boundary nanostructures of metallic nanoparticles synthesized by electrical discharges. J Nanopart Res 15:2058

    Article  Google Scholar 

  • Guo X, Gutsche A, Wagner M, Seipenbusch M, Nirschl H (2013b) Simultaneous SWAXS study of metallic and oxide nanostructured particles. J Nanopart Res 15:1559. https://doi.org/10.1007/s11051-013-1559-8

    Article  CAS  Google Scholar 

  • Gutsche A, Daikeler A, Guo X, Dingenouts N, Nirschl H (2014) Time-resolved SAXS characterization of the shell growth of silica-coated magnetite nanocomposites. J Nanopart Res 16:2475. https://doi.org/10.1007/s11051-014-2475-2

    Article  CAS  Google Scholar 

  • Gutsche A, Meier M, Guo X, Ungerer J, Nirschl H (2017) Modification of a SAXS camera to study structures on multiple scales. J Nanopart Res 19:321

    Article  Google Scholar 

  • Ismail B, Abaab M, Rezig B (2001) Structural and electrical properties of ZnO films prepared by screen printing technique. Thin Solid Films 383:92–94

    Article  CAS  Google Scholar 

  • Jia B, Gao L (2008) Growth of well-defined cubic hematite single crystals: oriented aggregation and Ostwald ripening. Cryst Growth Des 8:1372–1376. https://doi.org/10.1021/cg070300t

    Article  CAS  Google Scholar 

  • Jiang X, Wong FL, Fung MK, Lee ST (2003) Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices. Appl Phys Lett 83:1875–1877. https://doi.org/10.1063/1.1605805

    Article  CAS  Google Scholar 

  • Karlak R, Burnett D (1966) Quantitative phase analysis by X-ray diffraction. Anal Chem 38:1741–1745

    Article  CAS  Google Scholar 

  • Kelchtermans A, Elen K, Schellens K, Conings B, Damm H, Boyen HG, D'Haen J, Adriaensens P, Hardy A, van Bael MK (2013) Relation between synthesis conditions, dopant position and charge carriers in aluminium-doped ZnO nanoparticles. RSC Adv 3:15254–15262

    Article  CAS  Google Scholar 

  • Livage J, Henry M, Sanchez C (1988) Sol-gel chemistry of transition metal oxides. Prog Solid State Chem 18:259–341

    Article  CAS  Google Scholar 

  • Ludi B, Süess MJ, Werner IA, Niederberger M (2012) Mechanistic aspects of molecular formation and crystallization of zinc oxide nanoparticles in benzyl alcohol. Nanoscale 4:1982–1995

    Article  CAS  Google Scholar 

  • Luo L, Rossell MD, Xie D, Erni R, Niederberger M (2012) Microwave-assisted nonaqueous sol–gel synthesis: from Al: ZnO nanoparticles to transparent conducting films. ACS Sustain Chem Eng 1:152–160

    Article  Google Scholar 

  • Minami T (2005) Transparent conducting oxide semiconductors for transparent electrodes. Semicond Sci Technol 20:S35–S44

    Article  CAS  Google Scholar 

  • Nie D, Xue T, Zhang Y, Li X (2008) Synthesis and structure analysis of aluminum doped zinc oxide powders. Sci China Ser B Chem 51:823–828

    Article  CAS  Google Scholar 

  • Niederberger M (2007) Nonaqueous sol–gel routes to metal oxide nanoparticles. Acc Chem Res 40:793–800

    Article  CAS  Google Scholar 

  • Niederberger M, Cölfen H (2006) Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly. Phys Chem Chem Phys 8:3271–3287

    Article  CAS  Google Scholar 

  • Olliges-Stadler I, Rossell MD, Süess MJ, Ludi B, Bunk O, Pedersen JS, Birkedal H, Niederberger M (2013) A comprehensive study of the crystallization mechanism involved in the nonaqueous formation of tungstite. Nanoscale 5:8517–8525

    Article  CAS  Google Scholar 

  • Özgür Ü et al (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98:11

    Article  Google Scholar 

  • Patil A, Dighavkar C, Borse R (2011) Al doped ZnO thick films as CO2 gas sensors. J Optoelectron Adv Mater 13:1331–1337

    CAS  Google Scholar 

  • Penn RL, Soltis JA (2014) Characterizing crystal growth by oriented aggregation. CrystEngComm 16:1409–1418

    Article  CAS  Google Scholar 

  • Pinna N, Niederberger M (2008) Surfactant-free nonaqueous synthesis of metal oxide nanostructures. Angew Chem Int Ed 47:5292–5304

    Article  CAS  Google Scholar 

  • Pinna N, Garnweitner G, Antonietti M, Niederberger M (2005) A general nonaqueous route to binary metal oxide nanocrystals involving a C−C bond cleavage. J Am Chem Soc 127:5608–5612

    Article  CAS  Google Scholar 

  • Porod G (1951) Die Röntgenkleinwinkelstreuung von dichtgepackten kolloiden Systemen. Kolloid-Zeitschrift 124:83–114

    Article  CAS  Google Scholar 

  • Schmidt P (1991) Small-angle scattering studies of disordered, porous and fractal systems. J Appl Crystallogr 24:414–435. https://doi.org/10.1107/S0021889891003400

    Article  CAS  Google Scholar 

  • Schnablegger H, Singh Y (2013) The SAXS guide. Anton Paar GmbH

  • Singh MA, Ghosh SS, Shannon RF Jr (1993) A direct method of beam-height correction in small-angle X-ray scattering. J Appl Crystallogr 26:787–794. https://doi.org/10.1107/S0021889893005527

    Article  CAS  Google Scholar 

  • Song RQ, Cölfen H (2010) Mesocrystals—ordered nanoparticle superstructures. Adv Mater 22:1301–1330

    Article  CAS  Google Scholar 

  • Soofivand F, Tavakoli F, Salavati-Niasari M (2014) Synthesis and characterization of Zn(acac)2 one-dimensional nanostructures by novel method. Sumy State University

  • Strachowski T, Grzanka E, Lojkowski W, Presz A, Godlewski M, Yatsunenko S, Matysiak H, Piticescu RR, Monty CJ (2007) Morphology and luminescence properties of zinc oxide nanopowders doped with aluminum ions obtained by hydrothermal and vapor condensation methods. J Appl Phys 102:073513

    Article  Google Scholar 

  • Stubhan T, Oh H, Pinna L, Krantz J, Litzov I, Brabec CJ (2011) Inverted organic solar cells using a solution processed aluminum-doped zinc oxide buffer layer. Org Electron 12:1539–1543

    Article  CAS  Google Scholar 

  • Virtanen A, Ristimäki J, Keskinen J (2004) Method for measuring effective density and fractal dimension of aerosol agglomerates. Aerosol Sci Technol 38:437–446

    Article  CAS  Google Scholar 

  • Wang ZL (2004) Nanostructures of zinc oxide. Mater Today 7:26–33. https://doi.org/10.1016/S1369-7021(04)00286-X

    Article  CAS  Google Scholar 

  • Yoon M, Lee S, Park H, Kim H, Jang M (2002) Solid solubility limits of Ga and Al in ZnO. J Mater Sci Lett 21:1703–1704

    Article  CAS  Google Scholar 

  • Zellmer S, Kockmann A, Dosch I, Temel B, Garnweitner G (2015) Aluminum zinc oxide nanostructures with customized size and shape by non-aqueous synthesis. CrystEngComm 17:6878–6883. https://doi.org/10.1039/c5ce00629e

    Article  CAS  Google Scholar 

  • Zhang Q, Liu S-J, Yu S-H (2009) Recent advances in oriented attachment growth and synthesis of functional materials: concept, evidence, mechanism, and future. J Mater Chem 19:191–207

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We express our immense thanks to Mr. Tim Köhler and Mr. Florian Kaiser for the experimental assistance and Mrs. Sabrina Zellmer for fruitful discussions.

Funding

The research leading to these results has received funding from the German Research Foundation (DFG Ni 414/24-1 and Ga 1492/9-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Ungerer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ungerer, J., Thurm, AK., Meier, M. et al. Development of a growth model for aluminum-doped zinc oxide nanocrystal synthesis via the benzylamine route. J Nanopart Res 21, 106 (2019). https://doi.org/10.1007/s11051-019-4547-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-019-4547-9

Keywords

Navigation