Skip to main content
Log in

Localization of Sources Generating the EEG α Rhythm during Observation, Performance, and Imitation of Operant Movements in Subjects with Different Intelligence Levels

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Use of the sLORETA method in 62 adult subjects with different intelligence levels located sources generating rhythms in the frequency band 8–12 Hz during observation, performance, and imitation of circular movements with a computer mouse by the experimenter. A relationship between the level of intelligence and differences in the spatial patterns of cerebral cortex activation during performance and imitation of movements was seen. More marked and localized activation of neocortical structures was seen in adult subjects with high levels of general intelligence. Differences in the activation of cortical areas in groups with different general intelligence levels were largely mediated by structures in the right hemisphere, which is involved in processes of visuomotor coordination and the discrimination of own from others’ actions. The greater involvement of the precentral, cingulate, and postcentral gyri of the left hemisphere in the process of imitating the experimenter’s movements in the group with high intelligence may point to a higher level of activation of the mirror system of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alikina, M. A., Makhin, S. A., and Pavlenko, V. B., “People with high levels of general intelligence demonstrate more marked desynchronization of the μ rhythm on observation of the actions of others,” Uch. Zapis. Krym. Fed. Univ. im. Vernadskogo. Biol. Khim., 4, No. 3, 26–34 (2018).

    Google Scholar 

  • Anwar, M. N., Navid, S. N., Khan, M., and Kitajo, K., “A possible correlation between performance IQ, visuomotor adaptation ability and mu suppression,” Brain Res., 1603, No. 7, 84–93 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Banker, L. and Tadi, P., Neuroanatomy. Precentral Gyrus, StatPearls Publishing (2019).

  • Brass, M., Ruby, P., and Spengler, S., “Inhibition of imitative behaviour and social cognition,” Philos. Trans. R. Soc. Lond. B Biol. Sci., 364, No. 1528, 2359–2367 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • Campbell, M. E. J., Mehrkanoon, S., and Cunnington, R., “Intentionally not imitating: Insula cortex engaged for top-down control of action mirroring,” Neuropsychologia, 111, 241–251 (2018).

    Article  PubMed  Google Scholar 

  • Candidi, M., Urgesi, C., Ionta, S., and Aglioti, S. M., “Virtual lesion of ventral premotor cortex impairs visual perception of biomechanically possible but not impossible actions,” Soc. Neurosci., 3, No. 3–4, 388–400 (2008).

    Article  PubMed  Google Scholar 

  • Cavanna, A. and Trimble, M., “The precuneus: a review of its functional anatomy and behavioural correlates,” Brain, 129, No. 3, 564–583 (2006).

    Article  PubMed  Google Scholar 

  • Cross, K. A., Torrisi, S., Reynolds Losin, E. A., and Iacoboni, M., “Controlling automatic imitative tendencies: Interactions between mirror neuron and cognitive control systems,” NeuroImage, 83, 493–504 (2013).

    Article  PubMed  Google Scholar 

  • de Munck, J. C., Gonçalves, S. I., Mammoliti, R., et al., “Interactions between different EEG frequency bands and their effect on alpha–fMRI correlations,” NeuroImage, 47, No. 1, 69–76 (2009).

    Article  PubMed  Google Scholar 

  • Dedovic, K., Slavich, G. M., Muscatell, K. A., et al., “Dorsal anterior cingulate cortex responses to repeated social evaluative feedback in young women with and without a history of depression,” Front. Behav. Neurosci., 10, 64–76 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Denny, B. T., Kober, H., Wager, T. D., and Ochsner, K. N., “A meta-analysis of functional neuroimaging studies of self and other judgments reveals a spatial gradient for mentalizing in medial prefrontal cortex,” J. Cogn. Neurosci., 24, No. 8, 1742–1752 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Doppelmayr, M., Klimesch, W., Hödlmoser, K., et al., “Intelligence related upper alpha desynchronization in a semantic memory task,” Brain Res. Bull., 66, No. 2, 171–177 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Duffy, K. A., Luber, B., Adcock, R. A., and Chartrand, T. L., “Enhancing activation in the right temporoparietal junction using theta-burst stimulation: Disambiguating between two hypotheses of top-down control of behavioral mimicry,” PLoS One, 14, No. 1, e0211279 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan, J., “frontal lobe function and general intelligence: why it matters,” Cortex, 41, No. 2, 215–217 (2005).

    Article  PubMed  Google Scholar 

  • Fox, N. A., Bakermans-Kranenburg, M. J., Yoo, K. H., et al., “Assessing human mirror activity with EEG mu rhythm: a meta-analysis,” Psychol. Bull., 142, No. 3, 291–313 (2016).

    Article  PubMed  Google Scholar 

  • Frenkel-Toledo, S., Bentin, S., Perry, A., et al., “Dynamics of the EEG power in the frequency and spatial domains during observation and execution of manual movements,” Brain Res., 1509, 43–57 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Harding, I. H., Yücel, M., Harrison, B. J., et al., “Effective connectivity within the frontoparietal control network differentiates cognitive control and working memory,” NeuroImage, 106, 144–153 (2015).

    Article  PubMed  Google Scholar 

  • Hecht, E. E. and Parr, L. A., “The chimpanzee mirror system and the evolution of frontoparietal circuits for action observation and social learning,” in: New Frontiers in Mirror Neurons Research, Ferrari, P. and Rizzolatti, G. (eds.), Oxford University Press, Oxford (2015), pp. 153–181.

    Chapter  Google Scholar 

  • Hobson, H. M. and Bishop, D. V. M., “The interpretation of mu suppression as an index of mirror neuron activity: past, present and future,” R. Soc. Open Sci., 4, No. 3, 160662–83 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeon, H. and Lee, S.-H., “From neurons to social beings: Short review of the mirror neuron system research and its socio-psychological and psychiatric implications,” Clin. Psychopharmacol. Neurosci., 16, No. 1, 18–31 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang, J., Borowiak, K., Tudge, L., et al., “Neural mechanisms of eye contact when listening to another person talking,” Soc. Cogn. Affect. Neurosci., 12, No. 2, 319–328 (2017).

    PubMed  Google Scholar 

  • Kaida, A. I., Makhin, S. A., Eismont, E. V., and Pavlenko, V. B., “Developmental dynamics and topography of the individual reactivity of the EEG μ rhythm in children aged 4–14 years,” Vestn. Tomsk Gos. Univ. Biol., 45, 106–127 (2019).

    Article  Google Scholar 

  • Keenan, J. P., Wheeler, M. A., Gallup, G. G., and Pascual-Leone, A., “Selfrecognition and the right prefrontal cortex,” Trends Cogn. Sci., 4, No. 9, 338–344 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Keysers, C., and Gazzola, V., “Social neuroscience: mirror neurons recorded in humans,” Curr. Biol., 20, No. 8, 353–354 (2010).

    Article  CAS  Google Scholar 

  • Krall, S. C., Rottschy, C., Oberwelland, E., et al., “The role of the right temporoparietal junction in attention and social interaction as revealed by ALE meta-analysis,” Brain Struct. Funct., 220, No. 2, 587–604 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kropf, E., Syan, S. K., Minuzzi, L., and Frey, B. N., “From anatomy to function: the role of the somatosensory cortex in emotional regulation,” Braz. J. Psychiatry, 41, No. 3, 261–269 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lago-Rodriguez, A., Cheeran, B. J., Koch, G., et al., “The role of mirror neurons in observational motor learning: an integrative review,” Eur. J. Hum. Movement, 32, 82– (2014).

    Google Scholar 

  • Lebedeva, N. N., Karimova, E. D., Karpychev, V. V., and Mal’tsev, V. Yu., “The mirror system of the brain on observation, performance, and imagination of motor tasks – neurophysiological reflection of the perception of the consciousness of others,” Zh. Vyssh. Nerv. Deyat., 68, No. 2, 204–215 (2018).

    Google Scholar 

  • Lebedeva, N. N., Zufman, A. I., and Mal’tsev, V. Yu., “The mirror neuron system of the brain: the key to learning, personality formation, and understanding of the consciousness of others,” Usp. Fiziol. Nauk., 48, No. 4, 16–28 (2017).

    Google Scholar 

  • Leech, R. and Sharp, D. J., “The role of the posterior cingulate cortex in cognition and disease,” Brain, 137, No. 1, 12–32 (2014).

    Article  PubMed  Google Scholar 

  • Makhin, S. A., Makaricheva, A. A., Lutsyuk, N. V., and Pavlenko, V. B., “Studies of μ-rhythm reactivity on observation, auditory perception, and imitation of movements: interaction with personality properties determining empathy,” Fiziol. Cheloveka, 41, No. 6, 28–35 (2015).

    CAS  PubMed  Google Scholar 

  • Molenberghs, P., Cunnington, R., and Mattingley, J. B., “Brain regions with mirror properties: A meta-analysis of 125 human fMRI studies,” Neurosci. Biobehav. Rev., 36, No. 1, 341–349 (2012).

    Article  PubMed  Google Scholar 

  • Mukamel, R., Ekstrom, A. D., Kaplan, J., et al., “Single-neuron responses in humans during execution and observation of actions,” Curr. Biol., 20, No. 8, 750–756 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nacharova, M. A., Makhin, S. A., and Pavlenko, V. B., “Characteristics of the interaction between individual α-rhythm peak frequency and the features of general intelligence,” Uch. Zapis. Krym. Fed. Univ. im. Vernadskogo. Biol. Khim., 5, No. 2, 132–144 (2019).

    Google Scholar 

  • Pascual-Marqui, R., “Standardized low-resolution brain electromagnetic tomography (sLORETA, technical details,” Methods Find. Exp. Clin. Pharmacol., 24, No. Suppl. D, 5–12 (2002).

  • Paus, T., “Primate anterior cingulate cortex: where motor control, drive and cognition interface,” Nat. Rev. Neurosci., 2, No. 6, 417–424 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Raven, J. C. and Court, J. H., Manual for Raven’s Progressive Matrices and Vocabulary Scales [Russian translation], Cogito-Center, Moscow (2012).

    Google Scholar 

  • Raymaekers, R., Wiersema, J. R., and Roeyers, H., “EEG study of the mirror neuron system in children with high functioning autism,” Brain Res., 1304, 113–121 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Santiesteban, I., Banissy, M. J., Catmur, C., and Bird, G., “Enhancing social ability by stimulating right temporoparietal junction,” Curr. Biol., 22, No. 23, 2274–2277 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Saygin, A. P., “Superior temporal and premotor brain areas necessary for biological motion perception,” Brain, 130, No. 9, 2452–2461 (2007).

    Article  PubMed  Google Scholar 

  • Shamay-Tsoory, S. G., Tomer, R., Berger, B. D., and Aharon-Peretz, J., “Characterization of empathy defi cits following prefrontal brain damage: the role of the right ventromedial prefrontal cortex,” J. Cogn. Neurosci., 15, No. 3, 324–337 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Spengler, S., von Cramon, D. Y., and Brass, M., “Control of shared representations relies on key processes involved in mental state attribution,” Hum. Brain Mapp., 30, No. 11, 3704–3718 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • Tognoli, E. and Kelso, J. A., “The coordination dynamics of social neuromarkers,” Front. Hum. Neurosci., 20, No. 9, 563–578 (2015).

    Google Scholar 

  • Uddin, L. Q., Molnar-Szakacs, I., Zaidel, E., and Iacoboni, M., “rTMS to the right inferior parietal lobule disrupts self-other discrimination,” SCAN, 1, No. 1, 65–71 (2006).

    PubMed  PubMed Central  Google Scholar 

  • Varlamov, A. A., Portnova, G. V., and Makgloun, F. F., “The C-tactile system and the neurobiological mechanisms of ‘emotional’ tactile perception: discovery and current state of research,” Zh. Vyssh. Nerv. Deyat., 69, No. 3, 280–293 (2019).

    Google Scholar 

  • Yang, J., Kitada, R., Kochiyama, T., et al., “Brain networks involved in tactile speed classification of moving dot patterns: the effects of speed and dot periodicity,” Sci. Rep., 7, 40931–40943 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zald, D. H. and Andreotti, C., “Neuropsychological assessment of the orbital and ventromedial prefrontal cortex,” Neuropsychologia, 48, No. 12, 3377–3391 (2010).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Nacharova.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 70, No. 4, pp. 446–459, July–August, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nacharova, M.A., Makhin, S.A. & Pavlenko, V.B. Localization of Sources Generating the EEG α Rhythm during Observation, Performance, and Imitation of Operant Movements in Subjects with Different Intelligence Levels. Neurosci Behav Physi 51, 182–191 (2021). https://doi.org/10.1007/s11055-021-01056-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-021-01056-8

Keywords

Navigation