Skip to main content

Advertisement

Log in

Amentoflavone Ameliorates Memory Deficits and Abnormal Autophagy in Aβ25−35-Induced Mice by mTOR Signaling

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disease in which autophagy plays a crucial role. Amentoflavone is a flavonoid obtained from various plants and has been shown to have AD-resistant neuroprotective effects. This study investigated the role of amentoflavone on memory impairment and abnormal autophagy in amyloid-β25–35 (Aβ25−35)-induced mice to elucidate the mechanisms by which it exerts neuroprotective effects. In this experiment, the AD mouse model was established by intracerebroventricular (ICV) injection of Aβ25−35 peptides, and amentoflavone was administered orally for 4 weeks. Behavioral changes in mice and pathological changes in the hippocampus were observed, and levels of inflammation, oxidative stress, and autophagy in the brain were detected and analyzed. PC-12 and APPswe-N2a cells were used in vitro to further investigate the effect of amentoflavone on the level of intracellular autophagy. Molecular docking was used to determine the action sites of amentoflavone. The results showed that amentoflavone improved memory function, eased anxiety symptoms in Aβ25−35-induced mice, and reduced atrophic degeneration of neurons in the hippocampus. Moreover, amentoflavone lessened the oxidative stress and inflammation in the brains of mice. Through in vivo and in vitro experiments, we found that amentoflavone may enhance autophagy, by way of binding to the ATP site of the mTOR protein kinase domain. Amentoflavone not only interacted with mTOR, but also improved Aβ25−35-induced cognitive dysfunction in mice by enhancing autophagy, attenuating levels of inflammation and oxidative stress, and reducing apoptosis in brain cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. DeTure MA, Dickson DW (2019) The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener 14(1):32. https://doi.org/10.1186/s13024-019-0333-5

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lane CA, Hardy J, Schott JM (2018) Alzheimer’s disease. Eur J Neurol 25(1):59–70. https://doi.org/10.1111/ene.13439

    Article  CAS  PubMed  Google Scholar 

  3. Guo T, Zhang D, Zeng Y, Huang TY, Xu H, Zhao Y (2020) Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol Neurodegener. https://doi.org/10.1186/s13024-020-00391-7

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ravanan P, Srikumar IF, Talwar P (2017) Autophagy: The spotlight for cellular stress responses. Life Sci 188:53–67. https://doi.org/10.1016/j.lfs.2017.08.029

    Article  CAS  PubMed  Google Scholar 

  5. Nilsson P, Loganathan K, Sekiguchi M, Matsuba Y, Hui K, Tsubuki S, Tanaka M, Iwata N, Saito T, Saido TC (2013) Abeta secretion and plaque formation depend on autophagy. Cell Rep 5(1):61–69. https://doi.org/10.1016/j.celrep.2013.08.042

    Article  CAS  PubMed  Google Scholar 

  6. Wolfe DM, Lee JH, Kumar A, Lee S, Orenstein SJ, Nixon RA (2013) Autophagy failure in Alzheimer’s disease and the role of defective lysosomal acidification. Eur J Neurosci 37(12):1949–1961. https://doi.org/10.1111/ejn.12169

    Article  PubMed  PubMed Central  Google Scholar 

  7. Li Q, Liu Y, Sun M (2017) Autophagy and Alzheimer’s Disease. Cell Mol Neurobiol 37(3):377–388. https://doi.org/10.1007/s10571-016-0386-8

    Article  CAS  PubMed  Google Scholar 

  8. Cuanalo-Contreras K, Moreno-Gonzalez I (2019) Natural products as modulators of the proteostasis machinery: implications in neurodegenerative diseases. Int J Mol Sci. https://doi.org/10.3390/ijms20194666

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yu S, Yan H, Zhang L, Shan M, Chen P, Ding A, Li SF (2017) A review on the phytochemistry, pharmacology, and pharmacokinetics of amentoflavone, a naturally-occurring Biflavonoid. Molecules. https://doi.org/10.3390/molecules22020299

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rong S, Wan D, Fan Y, Liu S, Sun K, Huo J, Zhang P, Li X, Xie X, Wang F, Sun T (2019) Amentoflavone affects epileptogenesis and exerts neuroprotective effects by inhibiting NLRP3 inflammasome. Front Pharmacol 10:856. https://doi.org/10.3389/fphar.2019.00856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhaohui W, Yingli N, Hongli L, Haijing W, Xiaohua Z, Chao F, Liugeng W, Hui Z, Feng T, Linfeng Y, Hong J (2018) Amentoflavone induces apoptosis and suppresses glycolysis in glioma cells by targeting miR-124-3p. Neurosci Lett 686:1–9. https://doi.org/10.1016/j.neulet.2018.08.032

    Article  CAS  PubMed  Google Scholar 

  12. Chen C, Li B, Cheng G, Yang X, Zhao N, Shi R (2018) Amentoflavone ameliorates abeta1-42-induced memory deficits and oxidative stress in cellular and rat model. Neurochem Res 43(4):857–868. https://doi.org/10.1007/s11064-018-2489-8

    Article  CAS  PubMed  Google Scholar 

  13. Park HJ, Kim MM (2019) Amentoflavone induces autophagy and modulates p53. Cell J 21(1):27–34. https://doi.org/10.22074/cellj.2019.5717

    Article  PubMed  Google Scholar 

  14. Kraeuter AK, Guest PC, Sarnyai Z (2019) The Y-Maze for assessment of spatial working and reference memory in mice. Methods Mol Biol 1916:105–111. https://doi.org/10.1007/978-1-4939-8994-2_10

    Article  CAS  PubMed  Google Scholar 

  15. Lee J, Cho E, Kwon H, Jeon J, Jung CJ, Moon M, Jun M, Lee YC, Kim DH, Jung JW (2019) The fruit of Crataegus pinnatifida ameliorates memory deficits in beta-amyloid protein-induced Alzheimer’s disease mouse model. J Ethnopharmacol 243:112107. https://doi.org/10.1016/j.jep.2019.112107

    Article  CAS  PubMed  Google Scholar 

  16. Lueptow LM (2017) Novel object recognition test for the investigation of learning and memory in mice. J Vis Exp. https://doi.org/10.3791/55718

    Article  PubMed  PubMed Central  Google Scholar 

  17. Can A, Dao DT, Terrillion CE, Piantadosi SC, Bhat S, Gould TD (2012) The tail suspension test. J Vis Exp 59:e3769. https://doi.org/10.3791/3769

    Article  Google Scholar 

  18. Xu J, Zhou L, Weng Q, Xiao L, Li Q (2019) Curcumin analogues attenuate Abeta25-35-induced oxidative stress in PC12 cells via Keap1/Nrf2/HO-1 signaling pathways. Chem Biol Interact 305:171–179. https://doi.org/10.1016/j.cbi.2019.01.010

    Article  CAS  PubMed  Google Scholar 

  19. Jin X, Liu MY, Zhang DF, Zhong X, Du K, Qian P, Yao WF, Gao H, Wei MJ (2019) Baicalin mitigates cognitive impairment and protects neurons from microglia-mediated neuroinflammation via suppressing NLRP3 inflammasomes and TLR4/NF-kappaB signaling pathway. CNS Neurosci Ther 25(5):575–590. https://doi.org/10.1111/cns.13086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen Y, Liu Q, Shan Z, Zhao Y, Li M, Wang B, Zheng X, Feng W (2019) The protective effect and mechanism of catalpol on high glucose-induced podocyte injury. BMC Complement Altern Med 19(1):244. https://doi.org/10.1186/s12906-019-2656-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zappavigna S, Lombardi A, Misso G, Grimaldi A, Caraglia M (2017) Measurement of Autophagy by Flow Cytometry. Methods Mol Biol 1553:209–216. https://doi.org/10.1007/978-1-4939-6756-8_16

    Article  CAS  PubMed  Google Scholar 

  22. Hao T, Li Y, Fan S, Li W, Wang S, Li S, Cao R, Zhong W (2019) Design, synthesis and pharmacological evaluation of a novel mTOR-targeted anti-EV71 agent. Eur J Med Chem 175:172–186. https://doi.org/10.1016/j.ejmech.2019.04.048

    Article  CAS  PubMed  Google Scholar 

  23. Hamano T, Hayashi K, Shirafuji N, Nakamoto Y (2018) The Implications of Autophagy in Alzheimer’s Disease. Curr Alzheimer Res 15(14):1283–1296. https://doi.org/10.2174/1567205015666181004143432

    Article  CAS  PubMed  Google Scholar 

  24. Zhang H, Zheng Y (2019) [beta Amyloid Hypothesis in Alzheimer’s Disease:Pathogenesis,Prevention,and Management]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 41(5):702–708. https://doi.org/10.3881/j.issn.1000-503X.10875

    Article  PubMed  Google Scholar 

  25. Liu PP, Xie Y, Meng XY, Kang JS (2019) History and progress of hypotheses and clinical trials for Alzheimer’s disease. Signal Transduct Target Ther 4:29. https://doi.org/10.1038/s41392-019-0063-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Millucci L, Ghezzi L, Bernardini G, Santucci A (2010) Conformations and biological activities of amyloid beta peptide 25–35. Curr Protein Pept Sci 11(1):54–67. https://doi.org/10.2174/138920310790274626

    Article  CAS  PubMed  Google Scholar 

  27. Jahn H (2013) Memory loss in Alzheimer’s disease. Dialogues Clin Neurosci 15(4):445–454

    Article  Google Scholar 

  28. Antunes M, Biala G (2012) The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process 13(2):93–110. https://doi.org/10.1007/s10339-011-0430-z

    Article  CAS  PubMed  Google Scholar 

  29. Ishola IO, Chatterjee M, Tota S, Tadigopulla N, Adeyemi OO, Palit G, Shukla R (2012) Antidepressant and anxiolytic effects of amentoflavone isolated from Cnestis ferruginea in mice. Pharmacol Biochem Behav 103(2):322–331. https://doi.org/10.1016/j.pbb.2012.08.017

    Article  CAS  PubMed  Google Scholar 

  30. De Strooper B, Karran E (2016) The cellular phase of Alzheimer’s Disease. Cell 164(4):603–615. https://doi.org/10.1016/j.cell.2015.12.056

    Article  CAS  PubMed  Google Scholar 

  31. Combs CK, Karlo JC, Kao SC, Landreth GE (2001) beta-Amyloid stimulation of microglia and monocytes results in TNFalpha-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J Neurosci 21(4):1179–1188

    Article  CAS  Google Scholar 

  32. Ringheim GE, Szczepanik AM, Petko W, Burgher KL, Zhu SZ, Chao CC (1998) Enhancement of beta-amyloid precursor protein transcription and expression by the soluble interleukin-6 receptor/interleukin-6 complex. Brain Res Mol Brain Res 55(1):35–44. https://doi.org/10.1016/s0169-328x(97)00356-2

    Article  CAS  PubMed  Google Scholar 

  33. Mohammadi Shahrokhi V, Ravari A, Mirzaei T, Zare-Bidaki M, Asadikaram G, Arababadi MK (2018) IL-17A and IL-23: plausible risk factors to induce age-associated inflammation in Alzheimer’s disease. Immunol Invest 47(8):812–822. https://doi.org/10.1080/08820139.2018.1504300

    Article  CAS  PubMed  Google Scholar 

  34. Ramirez E, Sanchez-Maldonado C, Mayoral MA, Mendieta L, Alatriste V, Patricio-Martinez A, Limon ID (2019) Neuroinflammation induced by the peptide amyloid-beta (25–35) increase the presence of galectin-3 in astrocytes and microglia and impairs spatial memory. Neuropeptides 74:11–23. https://doi.org/10.1016/j.npep.2019.02.001

    Article  CAS  PubMed  Google Scholar 

  35. Jevtic S, Sengar AS, Salter MW, McLaurin J (2017) The role of the immune system in Alzheimer disease: Etiology and treatment. Ageing Res Rev 40:84–94. https://doi.org/10.1016/j.arr.2017.08.005

    Article  CAS  PubMed  Google Scholar 

  36. Stacchiotti A, Corsetti G (2020) Natural compounds and autophagy: allies against neurodegeneration. Front Cell Dev Biol 8:555409. https://doi.org/10.3389/fcell.2020.555409

    Article  PubMed  PubMed Central  Google Scholar 

  37. Switon K, Kotulska K, Janusz-Kaminska A, Zmorzynska J, Jaworski J (2017) Molecular neurobiology of mTOR. Neuroscience 341:112–153. https://doi.org/10.1016/j.neuroscience.2016.11.017

    Article  CAS  PubMed  Google Scholar 

  38. Kim YC, Guan KL (2015) mTOR: a pharmacologic target for autophagy regulation. J Clin Invest 125(1):25–32. https://doi.org/10.1172/JCI73939

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zachari M, Ganley IG (2017) The mammalian ULK1 complex and autophagy initiation. Essays Biochem 61(6):585–596. https://doi.org/10.1042/EBC20170021

    Article  PubMed  PubMed Central  Google Scholar 

  40. Perluigi M, Di Domenico F, Butterfield DA (2015) mTOR signaling in aging and neurodegeneration: At the crossroad between metabolism dysfunction and impairment of autophagy. Neurobiol Dis 84:39–49. https://doi.org/10.1016/j.nbd.2015.03.014

    Article  CAS  PubMed  Google Scholar 

  41. Sun L, Sharma AK, Han BH, Mirica LM (2020) Amentoflavone: A Bifunctional Metal Chelator that Controls the Formation of Neurotoxic Soluble Abeta42 Oligomers. ACS Chem Neurosci 11(17):2741–2752. https://doi.org/10.1021/acschemneuro.0c00376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen Y, Li N, Wang H, Wang N, Peng H, Wang J, Li Y, Liu M, Li H, Zhang Y, Wang Z (2020) Amentoflavone suppresses cell proliferation and induces cell death through triggering autophagy-dependent ferroptosis in human glioma. Life Sci 247:117425. https://doi.org/10.1016/j.lfs.2020.117425

    Article  CAS  PubMed  Google Scholar 

  43. Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171(4):603–614. https://doi.org/10.1083/jcb.200507002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bresciani A, Spiezia MC, Boggio R, Cariulo C, Nordheim A, Altobelli R, Kuhlbrodt K, Dominguez C, Munoz-Sanjuan I, Wityak J, Fodale V, Marchionini DM, Weiss A (2018) Quantifying autophagy using novel LC3B and p62 TR-FRET assays. PLoS One 13(3):e0194423. https://doi.org/10.1371/journal.pone.0194423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH (1994) RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78(1):35–43. https://doi.org/10.1016/0092-8674(94)90570-3

    Article  CAS  PubMed  Google Scholar 

  46. Sirimangkalakitti N, Juliawaty LD, Hakim EH, Waliana I, Saito N, Koyama K, Kinoshita K (2019) Naturally occurring biflavonoids with amyloid beta aggregation inhibitory activity for development of anti-Alzheimer agents. Bioorg Med Chem Lett 29(15):1994–1997. https://doi.org/10.1016/j.bmcl.2019.05.020

    Article  CAS  PubMed  Google Scholar 

  47. Zhao N, Sun C, Zheng M, Liu S, Shi R (2019) Amentoflavone suppresses amyloid beta1-42 neurotoxicity in Alzheimer’s disease through the inhibition of pyroptosis. Life Sci 239:117043. https://doi.org/10.1016/j.lfs.2019.117043

    Article  CAS  PubMed  Google Scholar 

  48. Pan X, Tan N, Zeng G, Zhang Y, Jia R (2005) Amentoflavone and its derivatives as novel natural inhibitors of human Cathepsin B. Bioorg Med Chem 13(20):5819–5825. https://doi.org/10.1016/j.bmc.2005.05.071

    Article  CAS  PubMed  Google Scholar 

  49. Bernstein HG, Keilhoff G (2018) Putative roles of cathepsin B in Alzheimer’s disease pathology: The good, the bad, and the ugly in one? Neural Regen Res 13(12):2100–2101. https://doi.org/10.4103/1673-5374.241457

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Funding

This work was supported by the National Key Research and Development Project (2019YFC1708802, 2017YFC1702800), the Major Science and Technology Projects in Henan Province (171100310500), the Henan province high-level personnel special support “Zhong Yuan One Thousand People Plan” – Zhongyuan Leading Talent (ZYQR201810080).

Author information

Authors and Affiliations

Authors

Contributions

MZ, BC, XZ, and WF conceived and designed the experiments in the manuscript. BC, QZ, and YC performed the experiments. BC, YC, and YW analyzed data, plotted the graphs for figures. BC, MZ, and BZ drafted the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiaoke Zheng.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, B., Zeng, M., Zhang, Q. et al. Amentoflavone Ameliorates Memory Deficits and Abnormal Autophagy in Aβ25−35-Induced Mice by mTOR Signaling. Neurochem Res 46, 921–934 (2021). https://doi.org/10.1007/s11064-020-03223-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03223-8

Keywords

Navigation