Skip to main content
Log in

Positive Monotone Modal Logic

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

Positive monotone modal logic is the negation- and implication-free fragment of monotone modal logic, i.e., the fragment with connectives and . We axiomatise positive monotone modal logic, give monotone neighbourhood semantics based on posets, and prove soundness and completeness. The latter follows from the main result of this paper: a (categorical) duality between so-called \(M^+\)-spaces (poset-based monotone neighbourhood frames with extra structure) and the algebraic semantics of positive monotone modal logic. The main technical tool is the use of coalgebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramsky, S., and A. Jung, Domain Theory, in S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, (eds.), Handbook of Logic in Computer Science, Vol. 3, Clarendon Press, Oxford, 1995, pp. 1–168.

  2. Alur, R., T. A. Henzinger, and O. Kupferman, Alternating-time temporal logic, Journal of the ACM 5:672–713, 2002.

    Article  Google Scholar 

  3. Balan, A., and A. Kurz, Finitary functors: From Set to Preord and Poset, in A. Corradini, B. Klin, and C. Cîrstea, (eds.), Proc. CALCO 2011, Springer, Berlin, Heidelberg, 2011, pp. 85–99.

    Google Scholar 

  4. Balan, A., A. Kurz, and J. Velebil, Positive fragments of coalgebraic logics, in R. Heckel, and S. Milius, (eds.), Algebra and Coalgebra in Computer Science, Springer, Berlin, Heidelberg, 2013, pp. 51–65.

    Chapter  Google Scholar 

  5. Balan, A., A. Kurz, and J. Velebil, An institutional approach to positive coalgebraic logic, Journal of Logic and Computation 27(6):1799–1824, 2015.

    Google Scholar 

  6. Balan, A., A. Kurz, and J. Velebil, Positive fragments of coalgebraic logics, Logical Methods in Computer Science 11:1–51, 2015.

    Article  Google Scholar 

  7. Bezhanishvili, N., J. de Groot, and Y. Venema, Coalgebraic Geometric Logic, in M. Roggenbach, and A. Sokolova, (eds.), Proc. CALCO 2019, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2019, pp. 7:1–7:18.

  8. Bezhanishvili, N., and A. Kurz, Free modal algebras: A coalgebraic perspective, in T. Mossakowski, U. Montanari, and M. Haveraaen, (eds.), Proc. CALCO 2007, Springer, Berlin, Heidelberg, 2007, pp. 143–157.

    Google Scholar 

  9. Celani, S. A., and R. Jansana, A new semantics for positive modal logic, Notre Dame Journal of Formal Logic 38(1):1–19, 1997.

    Article  Google Scholar 

  10. Celani, S. A., and R. Jansana, Priestley duality, a Sahlqvist theorem and a Goldblatt-Thomason theorem for positive modal logic, Logic Journal of the IGPL 7:683–715, 1999.

    Article  Google Scholar 

  11. Celani, S. A., and R. Jansana, A note on the model theory for positive modal logic, Fundamenta Informaticae 114:1–24, 2012.

    Article  Google Scholar 

  12. Chellas, B. F., Modal Logic: An Introduction, Cambridge University Press, Cambridge, 1980.

    Book  Google Scholar 

  13. Dahlqvist, F., and A. Kurz, The Positivication of Coalgebraic Logics, in F. Bonchi, and B. König, (eds.), Proc. CALCO 2017, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2017, pp. 9:1–9:15.

  14. Dunn, J. M., Positive modal logic, Studia Logica 55:301–317, 1995.

    Article  Google Scholar 

  15. Frittella, S., Monotone Modal Logic & Friends, Ph.D. thesis, Universite d’Aix-Marseille, 2014.

  16. Gehrke, M., H. Nagahashi, and Y. Venema, A Sahlqvist theorem for distributive modal logic, Annals of Pure and Applied Logic 131(1):65–102, 2005.

    Article  Google Scholar 

  17. Goldblatt, R. I., Logics of Time and Computation, Center for the Study of Language and Information, USA, 1987.

  18. Hansen, H. H., Monotonic modal logics, Master’s thesis, University of Amsterdam, 2003.

  19. Hansen, H. H., and C. Kupke, A coalgebraic perspective on monotone modal logic, Electronic Notes in Theoretical Computer Science 106:121–143, 2004.

    Article  Google Scholar 

  20. Kapulkin, K., A. Kurz, and J. Velebil, Expressiveness of positive coalgebraic logic. in T. Bolander, T. Braüner, S. Ghilardi, and L.S. Moss, (eds.), Proc. AIML 2012, College Publications, 2012, pp. 368–385.

  21. Kikot, S., A. Kurucz, F. Wolter, and M. Zakharyaschev, On strictly positive modal logics with S4.3 frames, in G. Bezhanishvili, G. D’Agostino, G. Metcalfe, and T. Studer, (eds.), Proc. AIML 2018, College Publications, 2018, pp. 427–446.

  22. Kupke, C., A. Kurz, and Y. Venema, Stone coalgebras, Theoretical Computer Science 327(1):109–134, 2004. Selected Papers of CMCS ’03.

    Article  Google Scholar 

  23. Palmigiano, A., A coalgebraic view on positive modal logic, Theoretical Computer Science 327:175–195, 2004.

    Article  Google Scholar 

  24. Parikh, R., The logic of games and its applications, in Selected Papers of the International Conference on “Foundations of Computation Theory” on Topics in the Theory of Computation, Elsevier North-Holland, Inc., USA, 1985, pp. 111–139.

  25. Pauly, M., Logic for Social Software, Ph.D. thesis, University of Amsterdam, 2001.

  26. Priestley, H. A., Representation of distributive lattices by means of ordered Stone spaces, Bulletin of the London Mathematical Society 2(2):186–190, 1970.

    Article  Google Scholar 

  27. Sadrzadeh, M., and R. Dyckhoff, Positive logic with adjoint modalities: Proof theory, semantics, and reasoning about information, Review of Symbolic Logic 3(3):351–373, 2010.

    Article  Google Scholar 

  28. Sambin, G., and V. Vaccaro, A new proof of Sahlqvist’s theorem on modal definability and completeness, The Journal of Symbolic Logic 54(3):992–999, 1989.

    Article  Google Scholar 

  29. Santocanale, L., and Y. Venema, Uniform interpolation for monotone modal logic, in L.D. Beklemishev, V. Goranko, and V.B. Shehtman, (eds.), Proc. AIML 2010, College Publications, 2010, pp. 350–370.

  30. Vickers, S. J., Topology via Logic, Cambridge University Press, New York, NY, USA, 1989.

    Google Scholar 

Download references

Acknowledgements

I would like to thank the anonymous reviewers for many constructive and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jim de Groot.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Presented by Jacek Malinowski

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Groot, J. Positive Monotone Modal Logic. Stud Logica 109, 829–857 (2021). https://doi.org/10.1007/s11225-020-09928-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-020-09928-9

Keywords

Navigation