Skip to main content
Log in

Electrochemical and spectroscopy studies of the interaction between the Zn2+ and the diethylditiocarbamate ligand (Et2DTC)

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Interactions occur between metal ions and organic molecules in the human body, and it is interesting to understand how this complexation happens and how stable it is in an aqueous environment. In this work, we studied the interaction between zinc (II) and the diethyldithiocarbamate ligand (Et2DTC), widely used in biological studies, evaluating the electrochemical and spectroscopic behavior of the complex formed in aqueous solution. The Zn2+ showed a reduction peak at − 1.14 V, in a quasi-reversible system with a mixed control process, using a glassy carbon electrode. The ET2DTC showed a peak reduction at − 0.86 V in an irreversible process, controlled by the diffusion of the species to the electrode surface. The Zn-Et2DTC complex presented an electrode process controlled by the adsorption of the species. Data show a stoichiometry of 1:2 Zn/Et2DTC and a formation constant of 7.8 × 108 dm6 mol−2. Spectroscopic measurements in the UV–Vis region showed a band at 277 nm that referred to the complex formed, indicating the interaction by the sulfur atom in a rapid reaction. These studies contribute significantly to understanding the time of action of this type of ligand in a biological system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fraga CG (2005) Relevance, essentiality, and toxicity of trace elements in human health. Mol Asp Med 26:235–244. https://doi.org/10.1016/j.mam.2005.07.013

    Article  CAS  Google Scholar 

  2. Goldman RD (2013) Zinc supplementation for acute gastroenteritis. Can Family Physician 59:363–364 (PMID: 23585601)

    Google Scholar 

  3. Kim B, Chung SJ, Shin HW (2013) Trientine-induced neurological deterioration in a patient with Wilson’s disease. J Clin Neurosci 20:606–608. https://doi.org/10.1016/j.jocn.2012.02.041

    Article  PubMed  Google Scholar 

  4. Alleyne T, Mohan N, Adogwa A (2012) Elevated ferric, calcium, and magnesium ions in the brain induce protein aggregation in brain mitochondria. West Indian Med J 61:122–127 (PMID: 23155955)

    CAS  PubMed  Google Scholar 

  5. Wojciak RW, Mojs E, Stanislawaska MK, Samborski W (2013) The serum zinc, copper, iron, and chromium concentration in epileptic children. Epilepsy Res 104:40–44. https://doi.org/10.1016/j.eplepsyres.2012.09.009

    Article  CAS  PubMed  Google Scholar 

  6. Torres-Vega A, Pilego-Riviero BF, Otero-Ojeda GA, Gomez-Olivan LM, Vieyra-Reyes P (2012) Limbic system pathologies associated with deficiencies and excesses of the trace elements iron, zinc, copper, and selenium. Nutr Rev 70:679–692. https://doi.org/10.1111/j.1753-4887.2012.00521.x

    Article  PubMed  Google Scholar 

  7. Cantilena LR Jr, Klaassen AD (1982) The effect of chelating agents on the excretion of endogenous metals. Toxicol Appl Pharmacol 63:344–350. https://doi.org/10.1016/0041-008X(82)90263-0

    Article  CAS  PubMed  Google Scholar 

  8. Flora SJS, Pachauri V (2010) Chelation in metal intoxication. Int J Environ Res Public Health 7:2745–2788. https://doi.org/10.3390/ijerph7072745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gower-Winter SD, Corniola RS, Morgan TJ, Levenson CW (2013) Zinc deficiency regulates hippocampal gene expression and impairs neuronal differentiation. Nutr Neurosci 16:174–182. https://doi.org/10.1179/1476830512Y.0000000043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Montano G, Cesaro E, Fattore L, Vidovic K, Palladino C, Crescitelli R (2013) Role of WT1–ZNF224 interaction in the expression of apoptosis-regulating genes. Hum Mol Genet 22:1771–1782. https://doi.org/10.1093/hmg/ddt027

    Article  CAS  PubMed  Google Scholar 

  11. Maret W (2019) The redox biology of redox-inert zinc ions. Free Radic Biol Med 134:331–326. https://doi.org/10.1016/j.freeradbiomed.2019.01.006

    Article  CAS  Google Scholar 

  12. Nagy EM, Sitran S, Montopoli M, Favaro M, Marchio L, Caparrota L, Fregona D (2012) Zinc (II) complexes with dithiocarbamate derivatives: Structural characterisation and biological assays on cancerous cell lines. J Inorg Biochem 117:131–139. https://doi.org/10.1016/j.jinorgbio.2012.09.004

    Article  CAS  PubMed  Google Scholar 

  13. Haase H, Overbeck S, Rink L (2008) Zinc supplementation for the treatment or prevention of disease: current status and future perspectives. Exp Gerontol 43:394–408. https://doi.org/10.1016/j.exger.2007.12.002

    Article  CAS  PubMed  Google Scholar 

  14. Maret W, Sandstead HH (2006) Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol 20:3–18. https://doi.org/10.1016/j.jtemb.2006.01.006

    Article  CAS  PubMed  Google Scholar 

  15. Malasam D, Kropat J, Hsieh SI, Finazzi G, Casero D, Loo JA, Pellegrini M, Wollman FA, Merchant SS (2013) Zinc deficiency impacts CO2 assimilation and disrupts copper homeostasis in Chalmydomonas reinhardtii. J Biol Chem 288:10672–10683. https://doi.org/10.1074/jbc.M113.455105

    Article  CAS  Google Scholar 

  16. Ajibade PA, Fatokun AA, Andrew FP (2020) Synthesis, characterization and anti-cancer studies of Mn (II), Cu (II), Zn (II) and Pt (II) dithiocarbamate complexes - crystal structures of the Cu (II) and Pt (II) complexes. Inorg Chim Acta. https://doi.org/10.1016/j.ica.2020.119431

    Article  Google Scholar 

  17. Somers PK, Medford RM, Saxena U (2000) Dithiocarbamates: effects on lipid hydroperoxides and vascular inflammatory gene expression. Free Radic Biol Med 28:1532–1537. https://doi.org/10.1016/S0891-5849(00)00257-4

    Article  CAS  PubMed  Google Scholar 

  18. Kim I, Kim CH, Kim JH, Lee J, Choi JJ, Chen ZA, Lee MG, Chung KC, Hsu CY, Ahn YS (2004) Pyrrolidine dithiocarbamate and zinc inhibit proteasome-dependent proteolysis. Exp Cell Res 298:229–238. https://doi.org/10.1016/j.yexcr.2004.04.017

    Article  CAS  PubMed  Google Scholar 

  19. Ávila TC, Segatell MGI, Beijo LA, Tarley CRT (2010) Employ of silica gel organically modified and ionically imprinted for selective on-line preconcentration of copper ions. Quím Nova 33:301–308. https://doi.org/10.1590/S0100-40422010000200014

    Article  Google Scholar 

  20. Real HC, Silva M, Matias T (1995) Intoxicação pelo disulfiramo. Lesões de leucoencefalopatia anóxica difusa. Med Interna 2:237–241. http://hdl.handle.net/10400.17/426

  21. Schubert J (1981) Chelating agents in biological systems. Environ Health Perspect 40:227–232. https://doi.org/10.1289/ehp.8140227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Meares CF, Wensel TG (1984) Metal chelates as probes of biological systems. Account Chem Res 17:202–209. https://doi.org/10.1021/ar00102a001

    Article  CAS  Google Scholar 

  23. Langeloth M, Chiku M, Einaga Y (2010) Anodic stripping voltammetry of zinc at boron-doped diamond electrodes in ammonia buffer solution. Electrochim Acta 55:2824–2828. https://doi.org/10.1016/j.electacta.2009.12.097

    Article  CAS  Google Scholar 

  24. Gosser DK Jr (1993) Cyclic voltammetry: simulation and analysis of reaction mechanism. VCH Publisher, New York, pp 97–99

    Google Scholar 

  25. Patil SF, Borhade AV, Nath M (1993) Diffusivity of some zinc and cobalt salts in water. J Chem Eng Data 38:574–576. https://doi.org/10.1021/je00012a025

    Article  CAS  Google Scholar 

  26. Brett CMA, Brett AMO (1994) Electrochemistry principles, methods, and applications. Oxford University Press, Oxford, p 180

    Google Scholar 

  27. Lieder M (2004) Molecular structure and electrochemical properties of alkyldithiocarbamates. Eletrochim Acta 49:1813–1822. https://doi.org/10.1016/j.electacta.2003.12.013

    Article  CAS  Google Scholar 

  28. Lingane JJ (1941) Interpretation of the polarographic waves of complex metal ions. Chem Rev 29:1–36

    Article  CAS  Google Scholar 

  29. Motevalli M, O’Brian P, Walsh JR, Watson IM (1996) Synthesis, Characterization and X-ray crystal structures of asymmetric bis(dialkyldithiocarbamates) of zinc: potential precursors for ZnS deposition. Polyhedron 15:2801–2808

    Article  CAS  Google Scholar 

  30. Costa AC Jr, Ondar GF, Versiane O, Ramos JM, Santos TG, Martin AA, Raniero L, Bussi GGA, Soto CAT (2013) DFT: B3LYP/6-311G (d, p) vibrational analysis of bis-(diethyldithiocarbamate)zinc (II) and natural bond orbitals. Spectrochim Acta A Mol Biomol Spectrosc 105:251–258

    Article  CAS  Google Scholar 

  31. Saclzinidis J, Grant MW (1981) metal exchange reactions between divalent metal ions and their dithiocarbamate complexes in dimethyl sulfoxide: a kinetic and mechanistic study. Aust J Chem 34:2195–2215

    Article  Google Scholar 

  32. Labuda J, Skatulokavá JM, Németh M, Gergely S (1984) Formation and stability of diethyldithiocarbamate complexes. Chem zvesti 38:597–605

    CAS  Google Scholar 

  33. Hogarth G (2012) Metal-dithiocarbamate complexes: chemistry and biological activity. Mini Rev Med Chem 12:1202–1215

    Article  CAS  Google Scholar 

  34. Cachapa A, Mederos A, Gili P, Molina RH, Dominguez S, Chinea E, Rodriguez ML, Feliz M, Llusar R, Brito F, Galarreta CMR, Tarbraue C, Gallardo G (2006) Studies of the interaction between bis(dithiocarbamate) copper (II) complexes with nitric oxide in aqueous solution and biological applications. Polyhedron 25:3366–3378. https://doi.org/10.1016/j.poly.2006.06.008

    Article  CAS  Google Scholar 

  35. Macias B, Villa MV, Gallego MRR (1995) Complexes of nickel and copper with aromatic dithiocarbamates. Transit Met Chem 20:347–350. https://doi.org/10.1007/BF00139126

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliana Maira Agostini Valle.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, V.A.S., de Lima, A.L.C., Codognoto, L. et al. Electrochemical and spectroscopy studies of the interaction between the Zn2+ and the diethylditiocarbamate ligand (Et2DTC). Transit Met Chem 46, 291–297 (2021). https://doi.org/10.1007/s11243-020-00445-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-020-00445-1

Navigation