Skip to main content
Log in

LC-MS based global metabolite profiling of grapes: solvent extraction protocol optimisation

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Optimal solvent conditions for grape sample preparation were investigated for the purpose of metabolite profiling studies, with the aim of obtaining as many features as possible with the best analytical repeatability. Mixtures of water, methanol and chloroform in different combinations were studied as solvents for the extraction of ground grapes. The experimental design used a two stage study to find the optimum extraction medium. The extracts obtained were further purified using solid phase extraction and analysed using a UPLC full scan TOF MS with both reversed phase and hydrophilic interaction chromatography. The data obtained were processed using data extraction algorithms and advanced statistical software for data mining. The results obtained indicated that a fairly broad optimal area for solvent composition could be identified, containing approximately equal amounts of methanol and chloroform and up to 20% water. Since the water content of the samples was variable, the robustness of the optimal conditions suggests these are appropriate for large scale profiling studies for characterisation of the grape metabolome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agnolet, S., Jaroszewski, J., Verpoorte, R., & Staerk, D. (2010). H-1 NMR-based metabolomics combined with HPLC-PDA-MS-SPE-NMR for investigation of standardized Ginkgo biloba preparations. Metabolomics, 6, 292–302.

    Article  PubMed  CAS  Google Scholar 

  • Anastasiadi, M., Zira, A., Magiatis, P., Haroutounian, S., Skaltsounis, A., & Mikros, E. (2009). H-1 NMR-based metabonomics for the classification of Greek wines according to variety, region, and vintage. Comparison with HPLC data. Journal of Agriculture and Food Chemistry, 57, 11067–11074.

    Article  CAS  Google Scholar 

  • Boulton, R. B., Singleton, V. L., Bisson, L. F., & Kunkee, R. E. (1996). Principles and practices of winemaking. New York: Chapman and Hall.

    Google Scholar 

  • Bruce, S., Jonsson, P., Antti, H., Cloarec, O., Trygg, J., Marklund, S., et al. (2008). Evaluation of a protocol for metabolic profiling studies on human blood plasma by combined ultra-performance liquid chromatography/mass spectrometry: From extraction to data analysis. Analytical Biochemistry, 372, 237–249.

    Article  PubMed  CAS  Google Scholar 

  • Bruce, S. J., Tavazzi, I., Parisod, V., Rezzi, S., Kochhar, S., & Guy, P. A. (2009). Investigation of human blood plasma sample preparation for performing metabolomics using ultrahigh performance liquid chromatographn y/mass spectrometry. Analytical Chemistry, 81, 3285–3296.

    Article  PubMed  CAS  Google Scholar 

  • Cipriani, G., et al. (2010). The SSR-based molecular profile of 1005 grapevine (Vitis vinifera L.) accessions uncovers new synonymy and parentages, and reveals a large admixture amongst varieties of different geographic origin. Theoretical and Applied Genetics, 121, 1569–1585.

    Article  PubMed  Google Scholar 

  • Culleré, L., et al. (2010). Selectivity and efficiency of different reversed-phase and mixed-mode sorbents to preconcentrate and isolate aroma molecules. Journal of Chromatography A, 1217, 1557–1566.

    Article  PubMed  Google Scholar 

  • De Vos, R. C., Moco, S., Lommen, A., Keurentjes, J. J., Bino, R. J., & Hall, R. D. (2007). Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nature Protocols, 2, 778–791.

    Article  PubMed  Google Scholar 

  • Flores-Valverde, A., & Hill, E. (2008). Methodology for profiling the steroid metabolome in animal tissues using ultraperformance liquid chromatography-electrospray-time-of-flight mass spectrometry. Analytical Chemistry, 80, 8771–8779.

    Article  PubMed  CAS  Google Scholar 

  • Fraccaroli, M., Nicoletti, S., Maltese, F., Choi, Y., Guzzo, F., Levi, M., et al. (2008). Pre-analytical method for metabolic profiling of plant cell cultures of Passiflora garckei. Biotechnology Letters, 2008(30), 2031–2036.

    Article  Google Scholar 

  • Gullberg, J., Jonsson, P., Nordström, A., Sjöström, M., & Moritz, T. (2004). Design of experiments: An efficient strategy to identify factors influencing extraction and derivatization of Arabidopsis thaliana samples in metabolomic studies with gas chromatography/mass spectrometry. Analytical Biochemistry, 331, 283–295.

    Article  PubMed  CAS  Google Scholar 

  • Jaillon, O., Aury, J. M., Noel, B., Policriti, A., Clepet, C., Casagrande, A., Choisne, N., Aubourg, S., Vitulo, N., Jubin, C., Vezzi, A., Legeai, F., Hugueney, P., Dasilva, C., Horner, D., Mica, E., Jublot, D., Poulain, J., Bruyère, C., Billault, A., Segurens, B., Gouyvenoux, M., Ugarte, E., Cattonaro, F., Anthouard, V., Vico, V., Del Fabbro, C., Alaux, M., Di Gaspero, G., Dumas, V., Felice, N., Paillard, S., Juman, I., Moroldo, M., Scalabrin, S., Canaguier, A., Le Clainche, I., Malacrida, G., Durand, E., Pesole, G., Laucou, V., Chatelet, P., Merdinoglu, D., Delledonne, M., Pezzotti, M., Lecharny, A., Scarpelli, C., Artiguenave, F., M. Pè, F., Valle, G., Morgante, M., Caboche, M., Adam-Blondon, A. -F., Weissenbach, J., Quétier, F., Wincker, P. (2007). The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 449, 463–467.

  • Kaiser, K. A., Barding, G. A., & Larive, C. K. (2009). A comparison of metabolite extraction strategies for 1H-NMR-based metabolic profiling using mature leaf tissue from the model plant Arabidopsis thaliana. Magnetic Resonance in Chemistry, 47, S147–S156.

    Article  PubMed  CAS  Google Scholar 

  • Kim, H., & Verpoorte, R. (2010). Sample preparation for plant metabolomics. Phytochemical Analysis, 21, 4–13.

    Article  PubMed  CAS  Google Scholar 

  • Kim, H., Choi, Y., & Verpoorte, R. (2010). NMR-based metabolomic analysis of plants. Nature protocol, 5, 536–549.

    Article  CAS  Google Scholar 

  • Kruger, N. J., Troncoso-Ponce, M. A., & Ratcliffe, R. G. (2008). 1H NMR metabolite fingerprinting and metabolomic analysis of perchloric acid extracts from plant tissues. Nature Protocol, 3, 1001–1012.

    Article  CAS  Google Scholar 

  • Lin, C. Y., Wu, H., Tjeerdema, R. S., & Viant, M. R. (2007). Evaluation of metabolite extraction strategies from tissue samples using NMR metabolomics. Metabolomics, 3, 55–67.

    Article  CAS  Google Scholar 

  • Liu, J., Grieson, C. S., Webb, A. A., & Hussey, P. J. (2010). Modelling dynamic plant cells. Current Opinion in Plant Biology, 13, 744–749.

    Article  PubMed  CAS  Google Scholar 

  • Masson, P., Alves, A. C., Ebbels, T. M. D., Nicholson, J. K., & Want, E. J. (2010). Optimization and evaluation of metabolite extraction protocols for untargeted metabolic profiling of liver samples by UPLC-MS. Analytical Chemistry, 82, 7779–7786.

    Article  PubMed  CAS  Google Scholar 

  • Mattivi, F., Vrhovsek, U., & Versini, G. (1999). Determination of indole-3-acetic acid, tryptophan and other indoles in must and wine by high-performance liquid chromatography with fluorescence detection. Journal of Chromatography A, 855, 227–235.

    Article  PubMed  CAS  Google Scholar 

  • Mattivi, F., Zulian, C., Nicolini, G., & Valenti, L. (2002). Wine, biodiversity, technology, and antioxidants. Annals of the New York Academy of Sciences, 957, 37–56.

    Article  PubMed  CAS  Google Scholar 

  • Michopoulos, F., Lai, L., Gika, H., Theodoridis, G., & Wilson, I. D. (2009). UPLC-MS-based analysis of human plasma for metabonomics using solvent precipitation or solid phase extraction. Journal of Proteome Research, 8, 2114–2121.

    Article  PubMed  CAS  Google Scholar 

  • Moritz, T., Johansson, A. (2007). Plant metabolomics. In W. Griffiths (Ed.), Metabolomics, metabonomics and metabolite profiling (pp. 256–257). Cambridge: RSC Publishing.

  • Rabinowitz, J. D., & Kimball, E. (2007). Acidic acetonitrile for cellular metabolome extraction from Escherichia coli. Analytical Chemistry, 79, 6167–6173.

    Article  PubMed  CAS  Google Scholar 

  • Rammouz, R. E., Létisse, F., Durand, S., Portais, J. C., Moussa, Z. W., & Fernandez, X. (2010). Analysis of skeletal muscle metabolome: Evaluation of extraction methods for targeted metabolite quantification using liquid chromatography tandem mass spectrometry. Analytical Biochemistry, 398, 169–177.

    Article  PubMed  Google Scholar 

  • Rezzi, S., Vera, F., Martin, F., Wang, S., Lawler, D., & Kochhar, S. (2008). Automated SPE-RP-HPLC fractionation of biofluids combined to off-line NMR spectroscopy for biomarker identification in metabonomics. Journal of Chromatography B, 871, 271–278.

    Article  CAS  Google Scholar 

  • R Development Core Team (2010). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Austria: Vienna. ISBN 3-900051-07-0. http://www.R-project.org/.

  • Ritter, J. B., Genzel, Y., & Reichl, U. (2008). Simultaneous extraction of several metabolites of energy metabolism and related substances in mammalian cells: Optimization using experimental design. Analytical Biochemistry, 373, 349–369.

    Article  PubMed  CAS  Google Scholar 

  • Sana, T. R., Waddell, K., & Fischer, S. M. (2008). A sample extraction and chromatographic strategy for increasing LC/MS detection coverage of the erythrocyte metabolome. Journal of Chromatography B, 871, 314–321.

    Article  CAS  Google Scholar 

  • Shin, M. H., Lee, D. Y., Skogerson, K., Wohlgemuth, G., Choi, I., Fiehn, O., et al. (2010a). Global metabolic profiling of plant cell wall polysaccharide degradation by Saccharophagus degradans. Biotechnology and Bioengineering, 105, 477–488.

    Article  PubMed  CAS  Google Scholar 

  • Shin, M., Lee, D., Liu, K., Fiehn, O., & Kim, K. (2010b). Evaluation of sampling and extraction methodologies for the global metabolic profiling of Saccharophagus degradans. Analytical Chemistry, 82, 6660–6666.

    Article  PubMed  CAS  Google Scholar 

  • Smith, C., Want, E., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78, 779–787.

    Article  PubMed  CAS  Google Scholar 

  • t’Kindt, R., Morreel, K., Deforce, D., Boerjan, W., & Van Bocxlaer, J. (2009). Joint GC-MS and LC-MS platforms for comprehensive plant metabolomics: Repeatability and sample pre-treatment. Journal of Chromatography B, 877, 3572–3580.

    Article  Google Scholar 

  • Tautenhahn, R., Bottcher, C., & Neumann, S. (2008). Highly sensitive feature detection for high resolution LC/MS. BMC Bioinformatics, 9, 504.

    Article  PubMed  Google Scholar 

  • Torchio, F., Cagnasso, E., Gerbi, V., & Rolle, L. (2010). Mechanical properties, phenolic composition and extractability indices of Barbera grapes of different soluble solids contents from several growing areas. Analytica Chimica Acta, 660, 183–189.

    Article  PubMed  CAS  Google Scholar 

  • Trygg, A. J., Gullberg, J., Johansson, J., Jonsson, A. I., Antti, P., Marklund, H., et al. (2005). Extraction and GC/MS analysis of the human blood plasma Metabolome. Analytical Chemistry, 77, 8086–8094.

    Article  PubMed  Google Scholar 

  • Velasco, R., Zharkikh, A., Troggio, M., Cartwright, D. A., Cestaro, A., Pruss, D., et al. (2007). A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE, 2, e1326.

    Article  PubMed  Google Scholar 

  • Villas-Bôas, S. G. (2006). Sampling and sample preparation. In S. G. Villas-Bôas, U. Roessner, M. A. E. Hansen, J. Smedsgaard, & J. Nielsen (Eds.), Metabolome Analysis: An Introduction (pp. 39–82). New Jersey: Hoboken.

    Google Scholar 

  • Villas-Boas, S., Hojer-Pedersen, J., Akesson, M., Smedsgaard, J., & Nielsen, J. (2005a). Global metabolite analysis of yeast: evaluation of sample preparation methods. Yeast, 22, 1155–1169.

    Article  PubMed  CAS  Google Scholar 

  • Villas-Boas, S., Mas, S., Akesson, M., Smedsgaard, J., & Nielsen, J. (2005b). Mass spectrometry in metabolome analysis. Mass Spectrometry Reviews, 24, 613–646.

    Article  PubMed  CAS  Google Scholar 

  • Want, E., Wilson, I., Gika, H., Theodoridis, G., Plumb, R., Shockcor, J., et al. (2010). Global metabolic profiling procedures for urine using UPLC-MS. Nature Protocols, 5, 1005–1018.

    Article  CAS  Google Scholar 

  • Wu, H., Southam, A. D., Hines, A., & Viant, M. R. (2008). High-throughput tissue extraction protocol for NMR-and MS-based metabolomics. Analytical Biochemistry, 372, 204–212.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was carried out with support from the ADP 2010 and MetaQuality projects, both funded by the autonomous Province of Trento (Italy), and from the QUALIFU-IDF project, funded by the Italian Ministry of Agriculture (MIPAAF). We thank Dr. Elisabete Carvalho and Mattia Gasperotti for their technical assistance in carrying out laboratory work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fulvio Mattivi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1: Solvent mixture compositions of the experimental points used in the first experiment

11306_2011_298_MOESM2_ESM.jpeg

Figure S2. RSD values distribution in terms of retention time for all features detected in the second experiment (four points)

Figure S3. Correlation plot between relative standard deviation (RSD) and peak intensity for the solvent mixture IL

11306_2011_298_MOESM4_ESM.gif

Figure S4. Example of RP chromatogram (BPI) showing the partitioning of analytes extracted from the solvent mixture L into the three fractions (a), (b) and (c)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Theodoridis, G., Gika, H., Franceschi, P. et al. LC-MS based global metabolite profiling of grapes: solvent extraction protocol optimisation. Metabolomics 8, 175–185 (2012). https://doi.org/10.1007/s11306-011-0298-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-011-0298-z

Keywords

Navigation