Skip to main content

Advertisement

Log in

Indoor concentrations of PM2.5 and associated water-soluble and labile heavy metal fractions in workplaces: implications for inhalation health risk assessment

  • Recent Developments and Innovative Strategies in Environmental Sciences in Europe
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

PM2.5 (i.e., particles with aerodynamic diameters less than 2.5 μm) and the associated water-soluble, dissolved, and labile fractions of heavy metals (Cu, Pb, Mn, Ni, Co, Zn, Cr, and Cd) were determined in indoor air of twenty workplaces in Alexandroupolis (Northeastern Greece). PM2.5 concentrations exhibited significant variance across the workplaces ranging from 11.5 μg m−3 up to 276 μg m−3. The water-soluble metal concentrations varied between 0.67 ± 2.52 ng m−3 for Co and 27.8 ± 19.1 ng m−3 for Ni exhibiting large variations among the different workplaces. The water-soluble metal fractions were further treated to obtain the labile metal fraction (by binding with Chelex 100–chelating resin) that might represent a higher potential for bioaccessibility than the total water-soluble fraction. The largest labile (chelexed) fractions (48–67% of the corresponding water-soluble concentrations) were found for Cd, Mn, Cu, and Ni, while the labile fractions of Pb, Cr, Co, and Zn were relatively lower (34–42% of the corresponding water-soluble concentrations). Water-soluble and labile concentrations of heavy metals were further used to calculate cancer and non-cancer risks via inhalation of the PM2.5-bound metals. To our knowledge, this is the first study estimating the health risks due to the inhalation of water-soluble and labile metal fractions bound to indoor PM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amoatey P, Omidvarborna H, Baawain MS, Al-Mamun A (2018) Indoor air pollution and exposure assessment of the gulf cooperation council countries: a critical review. Environ Int 121:491–506

    Article  CAS  Google Scholar 

  • Assimakopoulos VD, Saraga D, Helmis CG, Stathopoulou O, Halios C (2008) An experimental study of the indoor air quality in areas of different use. Global Nest J 10(2):192–200

    Google Scholar 

  • Birmili W, Allen AG, Bary F, Harrison RM (2006) Trace metal concentrations and water solubility in size-fractionated atmospheric particles and influence of road traffic. Environ Sci Technol 40:1144–1153

    Article  CAS  Google Scholar 

  • Brook RD, Rajagopalan S, Pope CA III, Brook JR, Bhatnagar A, Diez-Roux AV, Holguin F, Hong Y, Luepker RV, Mittleman MA, Peters A, Siscovick D, Smith SC, Whitsel L, Kaufman JD (2010) Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation 121:2331–2378

    Article  CAS  Google Scholar 

  • Cao Q, Rui G, Liang Y (2018) Study on PM2.5 pollution and the mortality due to lung cancer in China based on geographic weighted regression model BMC. Public Health 18(1):925

    Google Scholar 

  • Chao CY, Wong KK (2002) Residential indoor PM10 and PM2.5 in Hong Kong and the elemental composition. Atmos Environ 36(2):265–277

    Article  CAS  Google Scholar 

  • Deng W-J, Zheng H-L, Tsui AKY, Chen X-W (2016) Measurement and health risk assessment of PM2.5, flame retardants, carbonyls and black carbon in indoor and outdoor air in kindergartens in Hong Kong. Environ Int 96:65–74

    Article  CAS  Google Scholar 

  • Dermentzoglou M, Manoli E, Voutsa D, Samara C (2003) Sources and patterns of PAHs and heavy metals in fine indoor particulate matter of Greek houses. Fresenius Environ Bull 12:1511–1519

    CAS  Google Scholar 

  • Dos Santos M, Gómez D, Dawidowski L, Gautier E, Smichowski P (2009) Determination of water-soluble and insoluble compounds in size classified airborne particulate matter. Microchem J 91:133–139

    Article  CAS  Google Scholar 

  • Falta T, Limbeck A, Koellensperger G, Hann S (2008) Bioaccessibility of selected trace metals in urban PM2.5 and PM10 samples: a model study. Anal Bioanal Chem 390:1149–1157

    Article  CAS  Google Scholar 

  • Gemenetzis P, Moussas P, Arditsoglou A, Samara C (2006) Mass concentration and elemental composition of indoor PM2.5 and PM10 in university rooms in Thessaloniki, Northern Greece. Atmos Environ 40(17):3195–3206

    Article  CAS  Google Scholar 

  • Gioda A, Fuentes-Mattei E, Jimenez-Velez B (2011) Evaluation of cytokine expression in BEAS cells exposed to fine particulate matter (PM2.5) from specialized indoor environments. Int J Environ Health Res 21(2):106–119

    Article  CAS  Google Scholar 

  • Graney JR, Landis MS, Norris GA (2004) Concentrations and solubility of metals from indoor and personal exposure PM2.5 samples. Atmos Environ 38:237–247

    Article  CAS  Google Scholar 

  • He CR, Morawska L, Hitchins J, Gilbert D (2004) Contribution from indoor sources to particle number and mass concentrations in residential houses. Atmos Environ 38:3405–3415

    Article  CAS  Google Scholar 

  • Helmis CG, Tzoutzas J, Flocas HA, Halios CH, Stathopoulou OI, Assimakopoulos VD, Panis V, Apostolatou M, Sgouros G, Adam E (2007) Indoor air quality in a dentistry clinic. Sci Total Environ 377(2–3):349–365

    Article  CAS  Google Scholar 

  • Heo J, Antkiewicz DS, Shafer MM, Perkins DA, Sioutas C, Schauer JJ (2015) Assessing the role of chemical components in cellular responses to atmospheric particle matter (PM) through chemical fractionation of PM extracts. Anal Bioanal Chem 407:5953–5963

    Article  CAS  Google Scholar 

  • Horemans B, Van Grieken R (2010) Speciation and diurnal variation of thoracic, fine thoracic and sub micrometer airborne particulate matter at naturally ventilated office environments. Atmos Environ 44:1497–1505

    Article  CAS  Google Scholar 

  • Hu SW, Lin YY, Wu TC, Hong CC, Chan CC, Lung SC (2006) Workplace air quality and lung function among dental laboratory technicians. Am J Ind Med 49:85–92

    Article  CAS  Google Scholar 

  • Hu X, Zhang Y, Ding ZH, Wang TJ, Lian HZ, Sun YY, Wu JC (2012) Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China. Atmos Environ 57:146–152

    Article  CAS  Google Scholar 

  • Huang F, Bing P, Wu J, Chen E, Chen L (2017) Relationship between exposure to PM2.5 and lung cancer incidence and mortality: a meta-analysis. Oncotarget 8(26):43322–43331

    Article  Google Scholar 

  • International Agency Research on Cancer (IARC) (2006) Inorganic and organic lead compounds. Monograph on the evaluation of carcinogenic risks to humans Sterling: Stylus Publishing, LLC

  • International Agency Research on Cancer (IARC) (2012) A review of human carcinogens, part C: arsenic, metals, fibres, and dusts, 100. Monographs on the evaluation of carcinogenic risks to humans (pp 499)

  • Karthikeyan S, Joshi UM, Balasubramanian R (2006) Microwave assisted sample preparation for determining water-soluble fraction of trace elements in urban airborne particulate matter: evaluation of bioavailability. Anal Chim Acta 576:23–30

    Article  CAS  Google Scholar 

  • Kastury F, Smith E, Juhasz AL (2017) A critical review of approaches and limitations of inhalation bioavailability and bioaccessibility of metal (loid)s from ambient particulate matter or dust. Sci Total Environ 574:1054–1074

    Article  CAS  Google Scholar 

  • Kulshrestha A, Massey DD, Masih J, Taneja A (2014) Source characterization of trace elements in indoor environments at urban, rural and roadside sites in a semi-arid region of India. Aerosol Air Qual Res 14:1738–1751

    Article  CAS  Google Scholar 

  • Lee CW, Hsu DJ (2007) Measurements of fine and ultrafine particle formation in photocopy centers in Taiwan. Atmos Environ 41:6598–6609

    Article  CAS  Google Scholar 

  • Loupa G, Kioutsioukis I, Rapsomanikis S (2007) Indoor–outdoor atmospheric particulate matter relationships in naturally ventilated offices. Indoor and Built Environ 16:63–69

    Article  CAS  Google Scholar 

  • Loupa G, Zarogianni AM, Karali D, Kosmadakis I, Rapsomanikis S (2016) Indoor/outdoor PM2.5 elemental composition and organic fraction medications, in a Greek hospital. Sci Total Environ 550:727–735

    Article  CAS  Google Scholar 

  • Luo XS, Zhao Z, Xie JW, Luo J, Chen YB, Li H, Jin L (2019) Pulmonary bioaccessibility of trace metals in PM2.5 from different megacities simulated by lung fluid extraction and DGT method. Chemosphere 218:915–921

    Article  CAS  Google Scholar 

  • Manousakas M, Papaefthymiou H, Eleftheriadis K, Katsanou K (2014) Determination of water-soluble and insoluble elements in PM2.5 by ICP-MS. Sci Total Environ 493:694–700

    Article  CAS  Google Scholar 

  • Massey D, Habil M, Taneja A (2016) Particles in different microenvironments—its implications on occupants. Build Environ 106:237–244

    Article  Google Scholar 

  • Mihucz VG, Szigeti T, Dunster C, Giannoni M, Kluizenaar Y, Cattaneo A, Mandin C, Bartzis JG, Lucarelli F, Kelly FJ, Záray G (2015) An integrated approach for the chemical characterization and oxidative potential assessment of indoor PM2.5. Microchem J 119:22–29

    Article  CAS  Google Scholar 

  • Mukhtar A, Limbeck A (2013a) Comparison of the extraction efficiencies of different leaching agents for reliable assessment of bio-accessible trace metal fractions in airborne particulate matter. E3S Web of Conferences EDP Sciences

  • Mukhtar A, Limbeck A (2013b) Recent developments in assessment of bio-accessible trace metal fractions in airborne particulate matter: a review. Anal Chim Acta 774:11–25

    Article  CAS  Google Scholar 

  • Pardo M, Shafer MM, Rudich A, Schauer JJ, Rudich Y (2015) Single exposure to near roadway particulate matter leads to confined inflammatory and defense responses: possible role of metals. Environ Sci Technol 49:8777–8785

    Article  CAS  Google Scholar 

  • Pardo M, Porat Z, Rudich A, Schauer JJ, Rudich Y (2016) Repeated exposures to roadside particulate matter extracts suppresses pulmonary defense mechanisms, resulting in lipid and protein oxidative damage. Environ Pollut 210:227–237

    Article  CAS  Google Scholar 

  • Pekey B, Bozkurt ZB, Pekey H, Dogan G, Zararsiz A, Efe N, Tuncel G (2010) Indoor/outdoor concentrations and elemental composition of PM10/PM2.5 in urban/industrial areas of Kocaeli City, Turkey. Indoor Air 20:112–125

    Article  CAS  Google Scholar 

  • Pope CA III, Dockery DW (2006) Health effects of fine particulate air pollution: lines that connect. J Air Waste Manage Assoc 56:709–742

    Article  CAS  Google Scholar 

  • Pope CA III, Burnett RT, Thurston GD, Thun MJ, Calle EE, Krewski D (2004) Cardiovascular mortality and longterm exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease. Circulation 109:71–77

    Article  Google Scholar 

  • Romanazzi V, Casazza M, Malandrino M, Maurino V, Piano A, Schiliro T, Gilli G (2014) PM10 size distribution of metals and environmental-sanitary risk analysis in the city of Torino. Chemosphere 112:210–216

    Article  CAS  Google Scholar 

  • Sah D, Verma PK, Kumari KM, Lakhani A (2019) Chemical fractionation of heavy metals in fine particulate matter and their health risk assessment through inhalation exposure pathway. Environ Geochem Health 41(3):1445–1458

    Article  CAS  Google Scholar 

  • Sangiorgi G, Ferrero L, Ferrini BS, Lo Porto C, Perrone MG, Zangrando R, Gambaro A, Lazzati Z, Bolzacchini E (2013) Indoor airborne particle sources and semi-volatile partitioning effect of outdoor fine PM in offices. Atmos Environ 65:205–214

    Article  CAS  Google Scholar 

  • Saraga DE, Pateraki S, Papadopoulos A, Vasilakos C, Maggos T (2011) Studying the indoor air quality in three non-residential environments of different use: a museum, a printery industry and an office. Build Environ 46(11):2333–2341

    Article  Google Scholar 

  • Saraga DE, Volanis L, Maggos T, Vasilakos C, Bairachtari K, Helmis CG (2014) Workplace personal exposure to respirable PM fraction: a study in sixteen indoor environments. Atmos Pollut Res 5:431–437

    Article  CAS  Google Scholar 

  • Saraga DE, Maggos T, Sadoun E, Fthenou E, Hassan H, Tsiouri V, Karavoltsos S, Sakellari A, Vasilakos C, Kakosimos K (2017) Chemical characterization of indoor and outdoor particulate matter (PM2.5, PM10) in Doha, Qatar. Aerosol Air Qual Res 17:1156–1168

  • Satsangi PG, Yadav S, Pipal AS, Kumbhar N (2014) Characteristics of trace metals in fine (PM2.5) and inhalable (PM10) particles and its health risk assessment along with in-silico approach in indoor environment of India. Atmos Environ 92:384–393

    Article  CAS  Google Scholar 

  • See SW, Balasubramanian R (2006) Risk assessment of exposure to indoor aerosols associated with Chinese cooking. Environ Res 102(2):197–204

    Article  CAS  Google Scholar 

  • Shafer MM, Perkins DA, Antkiewicz DS, Stone EA, Quraishi TA, Schauer JJ (2010) Reactive oxygen species activity and chemical speciation of size-fractionated atmospheric particulate matter from Lahore, Pakistan: an important role for transition metals. J Environ Monit 12(3):704–715

    Article  CAS  Google Scholar 

  • Shrivastava A, Gupta VB (2011) Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles Young Sci 2(1):21–25

    Article  Google Scholar 

  • Shuster-Meiseles T, Shafer MM, Heo J, Pardo M, Antkiewicz DS, Schauer JJ, Rudich A, Rudich Y (2016) ROS-generating/ARE-activating capacity of metals in roadway particulate matter deposited in urban environment. Environ Res 146:252–262

    Article  CAS  Google Scholar 

  • Simoni M, Jaakkola MS, Carrozzi L, Baldacci S, Di Pede F, Viegi G (2003) Indoor air pollution and respiratory health in the elderly. Eur Respir J Suppl 40:15S–20s

    Article  CAS  Google Scholar 

  • Slezakova K, Alvim-Ferraz MC, Pereira MC (2012) Elemental characterization of indoor breathable particles at a Portuguese urban hospital. J Toxicol Environ Health A 75:909–919

    Article  CAS  Google Scholar 

  • Slezakova K, Morais S, Pereira MC (2014) Trace metals in size-fractionated particulate matter in a Portuguese hospital: exposure risks assessment and comparisons with other countries. Environ Sci Pollut Res 21:3604–3620

    Article  CAS  Google Scholar 

  • Szigeti T, Kertész Z, Dunster C, Kelly FJ, Záray G, Mihucz VG (2014) Exposure to PM2.5 in modern office buildings through elemental characterization and oxidative potential. Atmos Environ 94:44–52

    Article  CAS  Google Scholar 

  • Szigeti T, Dunster C, Cattaneo A, Cavallo D, Spinazzè A, Saraga DE, Sakellaris IA, de Kluizenaar Y, Cornelissen EJ, Hänninen O, Peltonen M, Calzolai G, Lucarelli F, Mandin C, Bartzis JG, Záray G, Kelly FJ (2016) Oxidative potential and chemical composition of PM2.5 in office buildings across Europe—the OFFICAIR study. Environ Int 92–93:324–333

    Article  CAS  Google Scholar 

  • Taner S, Pekey B, Pekey H (2013) Fine particulate matter in the indoor air of barbeque restaurants: elemental compositions, sources and health risks. Sci Total Environ 454–455:79–87

    Article  CAS  Google Scholar 

  • Torbica N, Krstev S (2006) World at work: dental laboratory technicians. Occup Environ Med 63(2):145–148

    Article  CAS  Google Scholar 

  • United States Environment Protection Agency (USEPA) (2018) Regional screening levels (RSLs)—generic tables. https://semspub.epa.gov/work/HQ/197430.pdf

  • United States Environmental Protection Agency (EPA) (1991) Office of solid waste and emergency response, role of the baseline risk assessment in superfund remedy selection decisions. Oswer Directive 9355.0-30, Washington DC

  • United States Environmental Protection Agency (USEPA) (1989) Risk assessment guidance for superfund, vol I: human health evaluation manual. EPA/540/1–89/002. Office of Emergency and Remedial Response, Washington, DC

    Google Scholar 

  • United States Environmental Protection Agency (USEPA) (2011a) Exposure factors handbook: 2011 edition. EPA/600/R–09/052F, Office for Research and Development, Washington, DC

  • United States Environmental Protection Agency (USEPA) (2011b) Methods to develop inhalation cancer risk estimates for chromium and nickel compounds EPA-452/R-11-0.12

  • United States Environmental Protection Agency (USEPA) (2013a) Risk-based concentration table. http://www.epa.gov/reg3hwmd/risk/human/index.htm. Accessed 30 Jan 2019

  • United States Environment Protection Agency (USEPA) (2013b) Users’ guide and background technical document for USEPA regions 9′S preliminary remediation goals. http://www.epa.gov/region9/ superfund/prg/files/04usersguide.pdf. Accessed 30 Jan 2019

  • von Schneidemesser E, Stone EA, Quraishi T, Shafer MM, Schauer JJ (2010) Toxic metals in the atmosphere in Lahore, Pakistan. Sci Total Environ 408(7):1640–1648

    Article  CAS  Google Scholar 

  • Voutsa D, Samara C (2002) Labile and bioaccessible fractions of heavy metals in the airborne particulate matter from urban and industrial areas. Atmos Environ 36:3583–3590

    Article  CAS  Google Scholar 

  • Voutsa D, Anthemidis A, Giakisikli G, Mitani K, Besis A, Tsolakidou A, Samara C (2015) Size distribution of total and water-soluble fractions of particle-bound elements—assessment of possible risks via inhalation. Environ Sci Pollut Res 22(17):13412–13426

    Article  CAS  Google Scholar 

  • Wang X, Bi X, Sheng G, Fu J (2006) Hospital indoor PM10/PM2.5 and associated trace elements in Guangzhou, China. Sci Total Environ 366:124–135

    Article  CAS  Google Scholar 

  • Xie JJ, Yuan CG, Xie J, Shen YW, He KQ, Zhang KG (2019) Speciation and bioaccessibility of heavy metals in PM2.5 in Baoding City, China. Environ Pollut 252:36–343

    Google Scholar 

  • Yadav S, Kumbhar N, Jan R, Roy R, Satsangi PG (2019) Genotoxic effects of PM10 and PM2.5 bound metals: metal bioaccessibility, free radical generation, and role of iron. Environ Geochem Health 41(3):1163–1186

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efthalia Kogianni.

Additional information

Responsible editor: Gerhard Lammel

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 153 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kogianni, E., Kouras, A. & Samara, C. Indoor concentrations of PM2.5 and associated water-soluble and labile heavy metal fractions in workplaces: implications for inhalation health risk assessment. Environ Sci Pollut Res 28, 58983–58993 (2021). https://doi.org/10.1007/s11356-019-07584-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-07584-8

Keywords

Navigation