Skip to main content
Log in

A Cu4 cluster-based MOF as a supercapacitor electrode material with ultrahigh capacitance

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Developing new pristine metal-organic framework (MOF)-based electrode material for high-performance supercapacitors is a considerable attractive task. Herein, a Cu4 cluster-based three-dimensional (3D) MOF ([Cu43-OH)2(atrz)2(1,3-BDC)3]·2H2O, Cu-atrz-BDC; atrz, 4-amino-1,2,4-triazole; 1,3-H2BDC, 1,3-benzenedicarboxylic acid) was synthesized and characterized by infrared spectroscopy, X-ray powder diffraction, thermogravimetric analysis, nitrogen adsorption-desorption, scanning electron microscopy, and X-ray photoelectron spectroscopy. The Cu-atrz-BDC firstly was used as an electrode material for supercapacitor. In a three-electrode system, the Cu-atrz-BDC electrode exhibited ultrahigh specific capacitance of 5525 F g−1 at 1 A g−1 and its specific capacitance can also keep about 886 F g−1 after 1000 cycles at 3 A g−1. Importantly, the Cu-atrz-BDC as the positive electrode and the rGO as the negative electrode were assembled into an asymmetric supercapacitor with excellent cycling stability, displaying the maximum energy density of 9.96 Wh kg−1 at a power density of 0.81 kW kg−1. The high supercapacitive performance might be ascribed to its porous three-dimensional structure, the nanosized particles, and better conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Furukawa H, Cordova KE, O'Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341(6149):1230444

    Article  PubMed  Google Scholar 

  2. Li JR, Sculley J, Zhou HC (2012) Metal−organic frameworks for separations. Chem Rev 112(2):869–932

    Article  PubMed  CAS  Google Scholar 

  3. Wang B, Cote AP, Furukawa H, O’Keeffe M, Yaghi OM (2008) Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 453(7192):207–211

    Article  PubMed  CAS  Google Scholar 

  4. Sun GC, Yu LL, Hu Y, Sha YY, Rong HR, Li BL, Liu HJ, Liu Q (2019) A manganese-based coordination polymer containing no solvent as a high performance anode in li-ion batteries. Cryst Growth Des 19(11):6503–6510

    Article  CAS  Google Scholar 

  5. Song YD, Yu LL, Gao YR, Shi CD, Cheng ML, Wang XM, Liu HJ, Liu Q (2017) One-dimensional zinc-based coordination polymer as a higher capacity anode material for lithium ion batteries. Inorg Chem 56(19):11603–11609

    Article  PubMed  CAS  Google Scholar 

  6. Liu Q, Yu LL, Wang Y, Ji YZ, Horvat J, Cheng ML, Jia XY, Wang GX (2013) Manganese-based layered coordination polymer: synthesis, structural characterization, magnetic property and electrochemical performance in lithium-ion batteries. Inorg Chem 52(6):2817–2822

    Article  PubMed  CAS  Google Scholar 

  7. Rajak R, Saraf M, Verma S, Kumar R, Mobin S (2019) Dy(III)-based metal–organic framework as a fluorescent probe for highly selective detection of picric acid in aqueous medium. Inorg Chem 58(23):16065–16074

    Article  PubMed  CAS  Google Scholar 

  8. Wang HY, Su J, Ma JP, Yu F, Leong CF, D’Alessandro DM, Kurmoo M, Zuo JL (2019) Concomitant use of tetrathiafulvalene and 7,7,8,8-tetracyanoquinodimethane within the skeletons of metal–organic frameworks: structures, magnetism, and electrochemistry. Inorg Chem 58(13):8657–8664

    Article  PubMed  CAS  Google Scholar 

  9. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854

    Article  PubMed  CAS  Google Scholar 

  10. Wang GP, Zhang L, Zhang JJ (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41(2):797–828

    Article  PubMed  CAS  Google Scholar 

  11. Shao YL, El-Kady MF, Sun JY, Li YG, Zhang QH, Zhu MF, Wang HZ, Dunn B, Kaner BR (2018) Design and mechanisms of asymmetric supercapacitors. Chem Rev 118(18):9233–9238

    Article  PubMed  CAS  Google Scholar 

  12. Zhang CL, Yin HH, Han M, Bao JC, Pang H, Zhu JM (2014) Two-dimensional tin selenide nanostructures for flexible all-solid-state supercapacitors. ACS Nano 8(4):3761–3770

    Article  PubMed  CAS  Google Scholar 

  13. Liu F, Chen YY, Liu Y, Bao JC, Han M, Dai ZH (2019) Integrating ultrathin and modified NiCoAl-layered double-hydroxide nanosheets with N-doped reduced graphene oxide for high-performance all-solid-state supercapacitors. Nanoscale 11:9896–9905

    Article  PubMed  CAS  Google Scholar 

  14. Tavakoli F, Rezaei B, Taghipour Jahromi AR, Ensafi AA (2020) Facile synthesis of yolk-shelled CuCo2Se4 microspheres as a novel electrode material for supercapacitor application. ACS Appl Mater Interfaces 12(1):418–427

    Article  PubMed  CAS  Google Scholar 

  15. Wang L, Han Y, Feng X, Zhou J, Qi P, Wang B (2016) Metal–organic frameworks for energy storage: batteries and supercapacitors. Coord Chem Rev 307:361–381

    Article  CAS  Google Scholar 

  16. Zheng SS, Xue HG, Pang H (2018) Supercapacitors based on metal coordination materials. Coord Chem Rev 373:2–21

    Article  CAS  Google Scholar 

  17. Díaz R, Orcajo MG, Botas JA, Calleja G, Palma J (2012) Co8-MOF-5 as electrode for supercapacitors. Mater Lett 68:126–128

    Article  Google Scholar 

  18. Wang X, Liu X, Rong H, Song Y, Wen H, Liu Q (2017) Layered manganese-based metal–organic framework as a high capacity electrode material for supercapacitors. RSC Adv 7(47):29611–29617

    Article  CAS  Google Scholar 

  19. Zhang Y, Lin B, Sun Y, Zhang X, Yang H, Wang J (2015) Carbon nanotubes @ metal–organic frameworks as Mn-based symmetrical supercapacitor electrodes for enhanced charge storage. RSC Adv 5(72):58100–58106

    Article  CAS  Google Scholar 

  20. Campagnol N, Romero-Vara R, Deleu W, Stappers L, Binnemans K, Devos DE, Fransaer J (2014) A hybrid supercapacitor based on porous carbon and the metal-organic framework MIL-100(Fe). ChemElectroChem 1(7):1182–1188

    Article  CAS  Google Scholar 

  21. Lee DY, Yoon SJ, Shrestha NK, Lee SH, Ahn H, Han SH (2012) Unusual energy storage and charge retention in Co-based metal–organic-frameworks. Microporous Mesoporous Mater 153:163–165

    Article  CAS  Google Scholar 

  22. Lee DY, Shinde DV, Kim EK, Lee W, Oh IW, Shrestha NK, Lee JK, Han SH (2013) Supercapacitive property of metal–organic-frameworks with different pore dimensions and morphology. Microporous Mesoporous Mater 171:53–57

    Article  CAS  Google Scholar 

  23. Wang L, Feng X, Ren L, Piao Q, Zhong J, Wang Y, Li H, Chen Y, Wang B (2015) Flexible solid-state supercapacitor based on a metal–organic framework interwoven by electrochemically-deposited PANI. J Am Chem Soc 137(15):4920–4923

    Article  PubMed  CAS  Google Scholar 

  24. Liu X, Shi C, Zhai C, Cheng M, Liu Q, Wang G (2016) Cobalt-based layered metal–organic framework as an ultrahigh capacity supercapacitor electrode material. ACS Appl Mater Interfaces 8(7):4585–4591

    Article  PubMed  CAS  Google Scholar 

  25. Yu H, Xu D, Xu Q (2015) Dual template effect of supercritical CO2 in ionic liquid to fabricate a highly mesoporous cobalt metal–organic framework. Chem Commun 51(67):13197–13200

    Article  CAS  Google Scholar 

  26. Rajak R, Saraf M, Mohammadaand A, Mobin MS (2017) Design and construction of a ferrocene basedinclined polycatenated Co-MOF for supercapacitorand dye adsorption applications. J Mater Chem A 5(34):17998–18011

    Article  CAS  Google Scholar 

  27. Yang J, Ma ZH, Gao WX, Wei M (2016) Layered structural Co-based MOF with conductive network frames as a new supercapacitor electrode. Chem Eur J 23(3):631–636

    Article  PubMed  Google Scholar 

  28. Ramachandrana ZC, Luo D, Wang K, Wang F (2018) Morphology-dependent electrochemical properties of cobalt-basedmetal organic frameworks for supercapacitor electrode materials. Electrochim Acta 267:170–180

    Article  Google Scholar 

  29. Wang KB, Cao XR, Wang SE, Zhao WJ, Xu JY, Wang ZK, Wu H (2018) Interpenetrated and polythreaded CoII-organic frameworks as a supercapacitor electrode material with ultrahigh capacity and excellent energy delivery efficiency. ACS Appl Mater Interfaces 10(10):9104–9115

    Article  PubMed  CAS  Google Scholar 

  30. Zhu GL, Wen H, Ma M, Wang WY, Yang L, Wang LC, Shi XF, Cheng XW, Sun XP, Yao YD (2018) A self-supported hierarchical Co-MOF as a supercapacitor electrode with ultrahigh areal capacitance and excellent rate performance. Chem Commun 54(74):10499–10502

    Article  CAS  Google Scholar 

  31. Sanati S, Abazari R, Morsali A, Kirillov AM, Junk PC, Wang J (2019) An asymmetric supercapacitor based on a non-calcined 3D pillared cobalt(II) metal−organic framework with long cyclic stability. Inorg Chem 58(23):16100–16111

    Article  PubMed  CAS  Google Scholar 

  32. Gao GX, Wang XM, Ma YW, Rong HR, Lai LF, Liu Q (2020) A three-dimensional Co5-cluster based MOF as a high performance electrode material for supercapacitor. Ionics 269(119):5189–5197

    Article  Google Scholar 

  33. Yang J, Xiong PX, Zheng C, Qiu H, Wei MD (2014) Metal–organic frameworks: a new promising class of material for high performances supercapacitor electrode. J Mater Chem A 2(39):16640–16644

    Article  CAS  Google Scholar 

  34. Kang L, Sun SX, Kong LB, Lang JW, Luo YC (2014) Investigating metal-organic framework as a new pseudo-capacitive material for supercapacitors. Chin Chem Lett 25(6):957–961

    Article  CAS  Google Scholar 

  35. Shi CD, Wang XM, Gao YR, Rong HR, Song YD, Liu HJ, Liu Q (2017) Nickel metal-organic framework nanoparticles as electrode materials for Li-ion batteries and supercapacitors. J Solid State Electrochem 21(8):2415–2423

    Article  CAS  Google Scholar 

  36. Wen P, Gong P, Sun J, Wang J, Yang S (2015) Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density. J Mater Chem A 3(26):13874–13883

    Article  CAS  Google Scholar 

  37. Qu C, Jiao Y, Zhao B, Chen D, Zou R, Walton KS, Liu M (2016) Nickel-based pillared MOFs for high-performance supercapacitors: design, synthesis and stability study. Nano Energy 26:66–73

    Article  CAS  Google Scholar 

  38. Jiao Y, Pei J, Yan CS, Chen DH, Hu YY, Chen G (2016) Layered nickel metal–organic framework for high performance alkaline battery-supercapacitorhybrid devices. J Mater Chem A 4(34):13344–13351

    Article  CAS  Google Scholar 

  39. Yan Y, Gu P, Zheng SS, Zheng MB, Pang H, Xue HG (2016) Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors. J Mater Chem A 4(8):19078–19085

    Article  CAS  Google Scholar 

  40. Sheberla D, Bachman JC, Elias JS, Sun CJ, Yang SH (2017) Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat Mater 16(2):220–224

    Article  PubMed  CAS  Google Scholar 

  41. Wang KB, Wang ZK, Wang X, Zhou XQ, Tao YH, Wu H (2018) Flexible long-chain-linker constructed Ni-based metal-organic frameworkswith 1D helical channel and their pseudo-capacitor behavior studies. J Power Sources 377:44–51

    Article  CAS  Google Scholar 

  42. Deng T, Zhang W, Arcelus O, Wang D, Shi XY, Zhang XY, Carrasco J, Rojo T, Zheng WT (2018) Vertically co-oriented two dimensional metal-organic frameworks for packaging enhanced supercapacitive performance. Chem Commun 1(1):6

    Article  Google Scholar 

  43. Xiang YH, Yan XL, Wang X, Li SN, Jiang YS, Hu MC, Zhai QZ (2018) Excellent supercapacitor performance of robust nickel−organic framework materials achieved by tunable porosity, inner-clusterredox, and in situ fabrication with graphene oxide. Cryst Growth Des 18(10):6035–6045

    Article  Google Scholar 

  44. Liu K, Deng LM, Li HD, Bao YX, Xiao ZY, Li B, Zhou Q, Geng YL, Wang L (2019) Two isostructural Co/Ni fluorine-containing metal-organic frameworks for dye adsorption and supercapacitor. J Soild State Chem 275(p):1–7

    CAS  Google Scholar 

  45. Zhao J, Li Q, Han L, Liu R (2019) Spherical mesocrystals from self-assembly of folic acid and nickel(II) ion for high-performance supercapacitors. J Colloid Interface Sci 538:142–148

    Article  PubMed  CAS  Google Scholar 

  46. Xue YY, Li SN, Jiang YC, Hu MC, Zhai QG (2019) Quest for 9-connected robust metal-organic framework platforms on the base of [M3(O/OH)(COO)6(pyridine)3] cluster as excellent gas separationandasymmetric supercapacitormaterials. J Mater Chem A 7(9):4640–4650

    Article  CAS  Google Scholar 

  47. Liu Q, Liu X, Shi C, Zhang Y, Feng X, Cheng ML, Su S, Gu J (2015) A copper-based layered coordination polymer: synthesis, magnetic properties and electrochemical performance in supercapacitors. Dalton Trans 44(44):19175–19184

    Article  PubMed  CAS  Google Scholar 

  48. Li WH, Ding K, Tian HR, Yao MS, Nath B, Deng WH, Wang YB, Xu G (2017) Conductive metal–organic framework nanowire array electrodes for high-performance solid-state supercapacitors. Adv Funct Mater 27(27):1702067

    Article  Google Scholar 

  49. Yu L, Wang X, Cheng M, Rong H, Song Y, Liu Q (2017) A three-dimensional copper coordination polymer constructed by 3-methyl-1H-pyrazole-4-carboxylic acid with higher capacitance for supercapacitors. Cryst Growth Des 18(1):280–285

    Article  Google Scholar 

  50. Ramachandran R, Zhao CH, Luo D, Wang K, Wang F (2018) Synthesis of copper benzene-1,3,5-tricarboxylate metal organic frameworks with mixed phases as the electrode material for supercapacitor applications. Appl Surf Sci 460:33–39

    Article  CAS  Google Scholar 

  51. Choi KM, Jeong HM, Park JH, Zhang YB, Kang JK, Yaghi OM (2014) Supercapacitors of nanocrystalline metal–organic frameworks. ACS Nano 8(7):7451–7457

    Article  PubMed  CAS  Google Scholar 

  52. Zhang D, Shi H, Zhang R, Zhang Z, Wang N, Li J, Yuan B, Bai H, Zhang J (2015) Quick synthesis of zeolitic imidazolate framework microflowers with enhanced supercapacitor and electrocatalytic performances. RSC Adv 5(72):58772–58776

    Article  CAS  Google Scholar 

  53. Tan Y, Zhang W, Gao Y, Wu J, Tang B (2015) Facile synthesis and supercapacitive properties of Zr-metal organic frameworks (UiO-66). RSC Adv 5(23):17601–17605

    Article  CAS  Google Scholar 

  54. Du M, Chen M, Yang XG, Wen J, Wang X, Fang SM, Liu CS (2014) A channel-type mesoporous in(iii)–carboxylate coordination framework with high physicochemical stability for use as an electrode material in supercapacitors. J Mater Chem A 2(25):9828–9834

    Article  CAS  Google Scholar 

  55. Yang J, Zheng C, Xiong P, Li Y, Wei M (2014) Zn-doped Ni-MOF material with a high supercapacitive performance. J Mater Chem A 2(44):19005–19010

    Article  CAS  Google Scholar 

  56. Jiao Y, Pei J, Chen DH, Yan CS, Hu YY, Zhang Q, Chen G (2017) Mixed-metallic MOF based electrode materials for high performance hybrid supercapacitors. J Mater Chem A 5(3):1094–1102

    Article  CAS  Google Scholar 

  57. Gao S, Sui Y, Wei F, Qi J, Meng Q, Ren Y, He Y (2018) Dandelion-like nickel/cobalt metal-organic framework based electrode materials for high performance supercapacitors. J Colloid Interface Sci 531:83–90

    Article  PubMed  CAS  Google Scholar 

  58. Wang J, Zhong Q, Xiong YH, Cheng DY, Zeng YQ, Bu YF (2019) Fabrication of 3D Co-doped Ni-based MOF hierarchical micro-flowers as ahigh-performance electrode material for supercapacitors. Appl Surf Sci 483:1158–1165

    Article  CAS  Google Scholar 

  59. Rajak R, Saraf M, Mobin SM (2019) Robust heterostructures of a bimetallic sodium–zinc metal–organic framework and reduced graphene oxide for high-performance supercapacitors. J Mater Chem A 7(4):1725–1736

    Article  CAS  Google Scholar 

  60. Kazemi SH, Hosseinzadeh B, Kazemi H, Kiani MA, Hajati S (2018) Facile synthesis of mixed metal-organic frameworks: electrode materials for supercapacitors with excellent areal capacitance and operational stability. ACS Appl Mater Interfaces 10(27):23063–23073

    Article  PubMed  CAS  Google Scholar 

  61. Wang YZ, Liu YX, Wang HQ, Liu W, Li Y, Zhang JF, Hou H, Yang JL (2019) Ultrathin NiCo-MOF nanosheets for high-performance supercapacitor electrodes. ACS Appl Energy Mater 2(3):2063–2071

    Article  CAS  Google Scholar 

  62. Wang XL, Zhao W, Zhang JW, Lu QL (2013) Three tetranuclear copper(II) cluster-based complexes constructed from4-amino-1,2,4-triazole and different aromatic carboxylates: assembly, structures, electrochemical and magnetic properties. J Solid State Chem 198:162–168

    Article  CAS  Google Scholar 

  63. Hsu YK, Chen YC, Lin YG (2012) Characteristics and electrochemical performances of lotus-like CuO/Cu(OH)2 hybrid material electrodes. J Electroanal Chem 673:43–47

    Article  CAS  Google Scholar 

  64. Chen K, Xue DF (2013) Room-temperature chemical transformation route to CuO nanowires toward high-performance electrode materials. J Phys Chem C 117(44):22576–22583

    Article  CAS  Google Scholar 

  65. Jiang RP, Zhao C, Huang ZX, Liu X, Wang DY, Hui Z, Xu XW (2020) An in situ growth strategy of NiCo-MOF nanosheets with more activity sites for asymmetric supercapacitors. Ionics 26:6309–6318

    Article  Google Scholar 

Download references

Funding

We acknowledge the financial support from the National Natural Science Foundation of China (No. 21975034), the Research Project of Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, and the Natural Science Research Key Project of Jiangsu Colleges and Universities (No. 16KJA430005).

Author information

Authors and Affiliations

Authors

Contributions

Y. Ma and G. Gao have equally contributed to this work.

Corresponding author

Correspondence to Qi Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOC 1212 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Gao, G., Su, H. et al. A Cu4 cluster-based MOF as a supercapacitor electrode material with ultrahigh capacitance. Ionics 27, 1699–1707 (2021). https://doi.org/10.1007/s11581-021-03954-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-03954-w

Keywords

Navigation