Skip to main content
Log in

Geology, geochemistry, fluid inclusions and O–H stable isotope constraints on genesis of the Lake Siah Fe-oxide ± apatite deposit, NE Bafq, Central Iran

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

The Lake Siah iron ± apatite deposit is situated in the Bafq Mining District (BMD), Central Iran. The iron ± apatite orebodies are hosted by a succession of rhyolite, rhyolitic tuff, trachyandesite, and andesite of Lower Cambrian age. The host rock has undergone widespread alteration and mineralization stages including Na (albite–quartz), followed by Na–Ca (albite–calcite–amphibole–magnetite ± quartz ± epidote), magnetite–apatite, K (biotite ± K-feldspar), hydrolytic (sericite–quartz), and argillic (kaolinite–montmorillonite ± dickite), respectively. Electron microprobe analyses (EPMA) from magnetite and hematite show significant variations of trace elements. Based on Ni/Cr + Mn and Ca + Al + Mn versus Ti + V diagrams, the majority of magnetite samples belong to Kiruna-type deposits. At least, three generations of fluid inclusions, including solid-bearing (L + V + S) (Type I), liquid-rich (L + V) (Type II-A), vapor-rich (L + V) (Type II-B), and liquid or vapor mono-phase (Type III), are recognized in quartz and apatite. The solid-bearing fluid inclusions in quartz completely homogenized at temperatures of 150  to > 530 °C with salinities of 30–58 wt% NaCl equiv. Liquid-rich fluid inclusions in apatite homogenized to a liquid phase at 175–210 °C, whereas the vapor-rich fluid inclusions homogenized to a vapor at 335–350 °C. Oxygen isotope analysis was carried out on quartz and magnetite. The hydrogen and oxygen isotopic compositions of quartz (δ18Ofluid values of 7.57–11.04‰) show that with progress in time the ore-forming solutions gradually evolved from a magmatic to meteoric-dominated source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Modified from Soheili and Mahdavi (1991)

Fig. 3

Modified after Hushmandzadeh et al. (2015)

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Aghanabati A (2004) Geology of Iran: Geological Survey of Iran, 600 p

  • Baker T, Mustard R, Fu B (2008) Mixed messages in iron-oxide–copper–gold systems of the Cloncurry district, Australia: insights from PIXE analysis of halogens and copper in fluid inclusions. Miner Deposita 43:599–608

    Google Scholar 

  • Barnes HL (1979) Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley, New York, pp 250–288

    Google Scholar 

  • Barrett TJ, MacLean WH (1991) Chemical, mass, and oxygen isotope changes during extreme hydrothermal alteration of an Archean rhyolite, vol 86. Noranda, Quebec, pp 406–414

    Google Scholar 

  • Barton MD (2014) Iron oxide (–Cu–Au–REE–P–Ag–U–Co) systems. In: Turekian KK, Holland HD (eds Treatise on geochemistry, geochemistry of mineral deposits, vol 13, 515–536

  • Barton MD, Johnson DA (1996) Evaporitic source model for igneous related Fe oxide–(REE-Cu–Au–U) mineralization. Geology 24:259–262

    Google Scholar 

  • Beaudoin G, Dupuis C, Gosselin P, Jébrak M (2007) Mineral chemistry of iron oxides: application to mineral exploration. In: Andrew CJ (ed) Ninth Biennial Society for geology applied meeting. SGA, Dublin, pp 497–500

    Google Scholar 

  • Berberian M, King GCP (1981) Towards a paleogeography and tectonic evolution of Iran, Canad. Earth Sci 18:210–265

    Google Scholar 

  • Bertelli M, Baker T (2010) A fluid inclusion study of the suicide ridge breccia pipe, Cloncurry district, Australia: implication for Breccia Genesis and IOCG mineralization. Precambrian Res 179:69–87

    Google Scholar 

  • Borumandi H (1973) Petrograpische und Lagerst attenkundliche untersuchungen der Esfordi-formation zwischen Mishdovan und Kushk bei Yazd/Central Iran. Unpublished Ph.D. Thesis, University of Aachen, German, 174 p

  • Boynton WV (1984) Geochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 63–114

    Google Scholar 

  • Brown PE (1989) Flincor: a microcomputer program for the reduction and investigation of fluid inclusion data. Am Mineral 74:1390–1393

    Google Scholar 

  • Budzinski H, Tischendorf G (1989) Distribution of REE among minerals in the Hercynian post kinematic granites of West Erzgebirge-Vogland, GDR. Z Geol Wiss 17:1019–1031

    Google Scholar 

  • Chen YJ, Ni P, Fan HR, Pirajno F, Lai Y, Su WC, Zhang H (2007) Diagnostic fluid inclusions of different types hydrothermal gold deposits. Acta Petrol Sin 23:2085–2108 (in Chinese with English abstract)

    Google Scholar 

  • Clayton RN, Mayeda TK (1963) The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim Cosmochim Acta 27:43–52

    Google Scholar 

  • Cline JS, Bodnar RJ (1991) Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt? Geophys Res 96:8113–8126

    Google Scholar 

  • Cole DR, Horita J, Eniamin V, Polyakov VB, Valley JW, Spicuzza MJ, Coffey DW (2004) An experimental and theoretical determination of oxygen isotope fractionation in the system magnetite-H2O from 300 to 800 °C. Geochim Cosmochim Acta 68:3569–3585

    Google Scholar 

  • Cooke DR, McPhail DC (2001) Epithermal Au–Ag–Te mineralization, Acupan, Baguio district, Philippines: numerical simulations of mineral deposition. Econ Geol 96:109–131

    Google Scholar 

  • Corriveau L, Williams PJ, Mumin AH (2010) Alteration vectors to IOCG mineralization from uncharted terranes to deposits. In: Corriveau L, Mumin AH (eds) Exploring for iron oxide copper-gold deposits, vol 20. Geological Association of Canada, St. John’s, pp 89–110

    Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703

    Google Scholar 

  • Criss R, Farquhar J (2008) Abundance, notation, and fractionation of light stable isotopes. Rev Mineral Geochem 68:15–30

    Google Scholar 

  • Daliran F (2002) Kiruna type iron oxide–apatite ores and apatitites of the Bafq district, Iran, with an emphasis on the REE geochemistry of their apatites. In: Porter TM (ed) Hydrothermal iron oxide copper gold and related deposits: a global perspective. 2. PGC, Adelaide, pp 303–320

    Google Scholar 

  • Daliran F, Stosch HG, Williams P (2009) A review of the early Cambrian magmatic and metasomatic events and their bearing on the genesis of the Fe oxide-REE-apatite deposits (IOA) of the Bafq District, Iran. In: Williams PJ et al (eds) Smart science for exploration and mining: proceedings of the 10th biennial SGA meeting, Townsville, Australia, 17th–20th August 2009

  • Daliran F, Stosch HG, Williams P, Jamali H, Dorri MB (2010) Early Cambrian iron oxide- apatite-REE (U) deposits of the Bafq District, east-central Iran. In: Corriveau L, Mumin H (eds) Exploring for iron oxide copper–gold deposits: Canada and global analogues. Geological Association of Canada, St. John’s, pp 147–160

    Google Scholar 

  • Dupuis C, Beaudoin G (2011) Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Miner Depos 46:319–335

    Google Scholar 

  • Fan HR, Hu FF, Wilde SA, Yang KF, Jin CW (2011) The Qiyugou gold-bearing breccia pipes, Xiong’ershan region, central China: fluid-inclusion and stable isotope evidence for an origin from magmatic fluids. Ore Geol Rev 53:25–45

    Google Scholar 

  • Förster HJ, Jafarzadeh A (1994) The Bafq Mining District in Central Iran—a highly mineralized Infracambrian volcanic field. Econ Geol 89:1697–1721

    Google Scholar 

  • Frietsch R, Perdahl JA (1995) Rare earth elements in apatite and magnetite in Kiruna-type iron ores and some other iron ore types. Ore Geol Rev 9:489–510

    Google Scholar 

  • Groves DI, Bierlein FP, Meinert LD, Hitzman MW (2010) Iron oxide copper-gold (IOCG) deposits through earth history: implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits. Econ Geol 105:641–654

    Google Scholar 

  • Gu LX, Wu CZ, Zhang ZZ, Franco P, Ni P, Chen PR, Xiao XJ (2011) Comparative study of ore-forming fluids of hydrothermal copper–gold deposits in the lower Yangtze River Valley, China. Int Geol Rev 53:477–498

    Google Scholar 

  • Haghipour A (1974) Etude géologique de la region de Biabanak-Bafg (Iran Central): Pétrographie et tectonique du socle Précambrien et de sa couverture. Unpublished thesis (Doctoratd’ Etat), Grenoble University, 403 pp

  • Haghipour A (1977) Geological map of Posht-e-Badam area. Scale 1:250,000. Geological Survey of Iran

  • Haghipour A, Pelissier G (1977) Geology of the Saghand sector. In: Haghipour A, Valeh N, Pelissier G, Davoudzadeh M (eds) Explanatory text of the Ardekan Quadrangle map. Geological Survey of Iran, vol 8, pp 10–68

  • Harlov DE, Andersson UB, Förster HJ, Nyström JO, Dulski P, Broman C (2002) Apatite-monazite relations in the Kiirunavaara magnetiteapatite ore, northern Sweden. Chem Geol 191:47–72

    Google Scholar 

  • Harris NBW, Pearce JA, Tindle AG (1986) Geochemical characteristics of collision-zone magmatism. In: Coward MP, Ries AC (eds) Collision tectonics, vol 19. Geological Society London, Special Publication, pp 67–81

  • Hastie A, Kerr A, Pearce J, Mitchell S (2007) Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th-Co discrimination diagram. J Petrol 48:2341–2357

    Google Scholar 

  • Haynes DW, Cross KC, Bills RT, Reed MH (1995) Olympic Dam ore genesis: a fluid mixing model. Econ Geol 90:281–307

    Google Scholar 

  • Hildebrand RS (1986) Kiruna-type deposits: their origin and relationship to inter mediate subvolcanic plutons in the Great Bear magmatic zone, Northwest Canada. Econ Geol 81:640–659

    Google Scholar 

  • Hitzman MW, Oreskes N, Einaudi MT (1992) Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu–U–Au–REE) deposits. Precambrian Res 58:241–287

    Google Scholar 

  • Huang F, Zhang Z, Lundstrom CC, Zhi X (2011) Iron and magnesium isotopic compositions of peridotite xenoliths from Eastern China. Geochim Cosmochim Acta 75:3318–3334

    Google Scholar 

  • Hushmandzadeh A, Sabzehee M, Hamdi B, Ameri H (2015) Aliabad geological map. Scale 1:25000, Geological Survey of Iran

  • Jami M (2005) Geology, geochemistry and evolution of the Esfordi phosphate–iron deposit, Bafq area, central Iran. Ph.D. thesis, University of New South Wales, Sydney, Australia, 313 p

  • Jami M, Dunlop AC, Cohen DR (2007) Fluid inclusion and stable isotope study of the Esfordi apatite–magnetite deposit, Central Iran. Econ Geol 102:1111–1128

    Google Scholar 

  • Kendrick MA, Baker T, Fu B, Phillips D, Williams PJ (2008) Noble gas and halogen constraints on regionally extensive mid-crustal Na–Ca metasomatism, the proterozoic eastern mount Isa block, Australia. Precambrian Res 163:131–150

    Google Scholar 

  • Kodera P, Lexa J, Rankin AH, Fallick AE (2005) Epithermal gold veins in a caldera setting: Banska Hodrusa, Slovakia. Miner Depos 39:921–943

    Google Scholar 

  • Kranidiotis P, MacLean WH (1987) Systematics of chlorite alteration at the Phelps Dodge massive sulphide deposit, Mattagami, Quebec. Econ Geol 82:1898–1911

    Google Scholar 

  • Kyser TK, Kerrich R (1991) Retrograde exchange of hydrogen isotopes between hydrous minerals and water at low temperatures. In: Taylor HP, O’Neil JR, Kaplan IR (eds) Stable isotope geochemistry: a tribute to samuel epstein, vol 3. Geochemical Society Special Publication, pp 409–422

  • Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali–silica diagram. Petrology 27:745–750

    Google Scholar 

  • MacLean PD (1990) The triune brain in evolution (Role in paleocerebral functions). Plenum Press, New York

    Google Scholar 

  • Maniar PD, Piccoli PM (1989) Tectonic discrimination of granitoids. Geol Soc Am Bull 101:635–643

    Google Scholar 

  • Mokhtari MAA, Hosseinzadeh G, Emami MH (2013) Genesis of iron-apatite ores in Posht-e- Badam Block (Central Iran), using REE geochemistry. J Earth Sci Syst 122:795–807

    Google Scholar 

  • Müller D, Groves DI (2016) Potassic igneous rocks and associated gold–copper mineralization. Springer, Berlin

    Google Scholar 

  • Nabatian G, Ghaderi M, Daliran F, Rashidnejad-Omran N (2012) Sorkhe-Dizaj iron oxide–apatite ore deposit in the Cenozoic Alborz-Azarbaijan Magmatic Belt, NW Iran. Resour Geol 63:42–56

    Google Scholar 

  • NISCO (1979) Brief account on the Bafq iron ore region of Central Iran. Unpubl Rept. National Iranian Steel Corporation, Tehran. 149 p

  • Oliver NHS, Cleverley JS, Mark G, Pollard PJ, Fu B, Marshall LJ, Rubenach MJ, Williams PJ, Baker T (2004) Modeling the role of sodic alteration in the genesis of iron oxide–copper–gold deposits, eastern Mount Isa block, Australia. Econ Geol 99:1145–1176

    Google Scholar 

  • Pearce JA (1983) Role of subcontinental lithosphere in magma genesis at active continental margins. In: Hawkesworth CJ, Norry MJ (eds) Continental basalts and mantle xenoliths. Shiva, Nantwich, pp 230–249

    Google Scholar 

  • Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983

    Google Scholar 

  • Pollard PJ (2000) Evidence of a magmatic fluid and metal source for Fe-oxide Cu–Au mineralisation. In: Porter TM (ed) Hydrothermal iron oxide copper-gold and related deposits: a global perspective, vol 1. Australian Mineral Foundation, Adelaide, pp 27–46

    Google Scholar 

  • Pollard PJ (2001) Sodic (-calcic) alteration in Fe-oxide–Cu–Au districts: an origin via unmixing of magmatic H2O–CO2–NaCl ± CaCl2–KCl fluids. Miner Depos 36:93–100

    Google Scholar 

  • Pollard PJ (2006) An intrusion-related origin for Cu–Au mineralization in iron oxide–copper–gold (IOCG) provinces. Miner Deposita 41:179–187

    Google Scholar 

  • Pons MJ, Franchini MB, López Escobar L (2007) Los cuerpos ígneos neógenos del Cerro de Las Minas (35.3° S–69.9°O), Cordillera Principal de los Andes, SO de Mendoza: Geología, Petrografía y Geoquímica. Rev Asoc Geol Argent 62:267–282

    Google Scholar 

  • Rajabi A (2012) Ore controlling parameters and genesis of sedimentary-exhalative Zn–Pb (SEDEX type) deposits, Zarigan–Chahmir Area, East of Bafq, Central Iran. Unpublished Ph.D. thesis, Tarbiat Modares University, Iran, 420 pp

  • Rajabi A, Rastad E, Alfonso P, Canet C (2012) Geology, ore facies and sulfur isotopes of the Koushk vent-proximal sedimentary-exhalative deposit, Posht-e-Badam block, Central Iran. Int Geol Rev 54:1635–1648

    Google Scholar 

  • Rajabi A, Canet C, Rastad E, Alfonso P (2015) Basin evolution and stratigraphic correlation of sedimentary-exhalative Zn–Pb deposits of the early Cambrian Zarigan–Chahmir Basin, Central Iran. Int Ore Geol Rev 64:328–353

    Google Scholar 

  • Ramezani J (1997) Regional geology, geochronology and geochemistry of the igneous and metamorphic rock suites of the Saghand Area, central Iran. Unpublished Ph.D. thesis, St. Louis, Missouri, Washington University, 416 pp

  • Ramezani J, Tucker RD (2003) The Saghand region, Central Iran: U–Pb geochronology, petrogenesis and implications for Gondwana tectonics. Am J Sci 303:622–665

    Google Scholar 

  • Richards JP, Mumin AH (2013) Magmatic-hydrothermal processes within an evolving Earth: iron oxide-copper-gold and porphyry Cu ± Mo ± Au deposits. Geology 41:767–770

    Google Scholar 

  • Rollinson HR (1993) Using trace element data. In: Rollinson HR (ed) Using geochemical data. Pearson Education Asia (Pte) Ltd, Singapore, pp 102–170

    Google Scholar 

  • Rønsbo JG (1989) Coupled substitution involving REEs and Na and Si in apatite in alkaline rocks from the Illimaussaq intrusions, South Greenland, and the petrological implications: Am Miner 74:896–901

    Google Scholar 

  • Rostami M (2016) Origin and distribution of rare earth element (REE) from the apatite of the Lake Siah Fe deposit, Bafq metallogenic district, Central Iran. M.Sc. Thesis, Bu-Ali Sina University, Hamedan, Iran, 177 pp

  • Samani AB (1988) Metallogeny of the Precambrian in Iran. Precambrian Res 39:85–106

    Google Scholar 

  • Samani BA (1993) Saghand formation, a riftogenic unit of upper Precambrian in central Iran. J Geosci 6:32–45

    Google Scholar 

  • Scheka SA, Platkov AV, Vezhosek AA, Levashov GB, Oktyabrsky RA (1980) The trace element paragenesis of magnetite. Nauka, Moscow, p 147p

    Google Scholar 

  • Sharp ZD, Gibbons JA, Maltsev O, Atudorei V, Pack A, Sengupta S, Shock EL, Knauth LP (2016) A calibration of the triple oxygen isotope fractionation in the SiO2–H2O system and applications to natural samples. Geochim Cosmochim Acta 186:105–119

    Google Scholar 

  • Shepherd TJ, Rankin AH, Alderton DHM (1985) A practical guide to fluid inclusion studies. Blackie, Glasgow, p 239

    Google Scholar 

  • Sheppard SM (1986) Characterization and isotopic variations in natural waters. Rev Miner Geochem 16:165–183

    Google Scholar 

  • Shriver NA, MacLean WH (1993) Mass, volume and chemical changes in the alteration zone at the Norbec mine, vol 28. Noranda, Quebec, pp 157–166

    Google Scholar 

  • Sillitoe RH (2003) Iron oxide–copper–gold deposits: an Andean view. Miner Deposita 38:787–812

    Google Scholar 

  • Simon AC, Pettke T, Candela PA, Piccoli PM, Heinrich CA (2004) Magnetite solubility and iron transport in magmatic-hydrothermal environments. Geochim Cosmochim Acta 68:4905–4914

    Google Scholar 

  • Smith MP, Gleeson SA, Yardley BWD (2013) Hydrothermal evolution and metal transport in the Kiruna district, Swed, contrasting metal behavior in aqueous, aqueous-carbonic brines. Geochim Cosmochim Acta 102:89–112

    Google Scholar 

  • Soheili M, Mahdavi MA (1991) Esfordi geological map. Scale 1:100,000, Geological Survey of Iran

  • Stöcklin J (1974) Possible ancient continental margins in Iran. In: Burk CA, Drake CL (eds) The geology of continental margins. Springer, New York, pp 873–887

    Google Scholar 

  • Stosch H, Romer R, Daliran F, Rhede D (2011) Uranium–lead ages of apatite from iron oxide ores of the Bafq District, East-Central Iran. Miner Depos 46:9–21

    Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norrey MJ (eds) Magmatism in the ocean basins, vol 42. Geological Society of London, Special Publication, pp 313–345

  • Torab FM, Lehmann B (2007) Magnetite–apatite deposits of the Bafq district, Central Iran: apatite geochemistry and monazite geochronology. Miner Mag 71:347–363

    Google Scholar 

  • Verdel C, Wernicke BP, Renne PR, Spell TL (2007) Geology and thermochronology of Tertiary Cordilleran-style metamorphic core complexes in the Saghand region of central Iran. GSA Bull 119:961–977

    Google Scholar 

  • Whitney DL, Evans BV (2010) Abbreviations for names of rock-forming minerals. Am Miner 95:185–187

    Google Scholar 

  • Wilkinson JJ (2001) Fluid inclusions in hydrothermal ore deposits. Lithos 55:229–272

    Google Scholar 

  • Williams P (2010) Classifying IOCG deposits. In: Exploring for iron oxide copper–gold deposits: Canada and global analogues. Geological Association of Canada (Short Course Notes) vol 20, pp 11–19

  • Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343

    Google Scholar 

  • Xavier RP, Wiedenbeck M, Trumbull RB et al (2008) Tourmaline B-isotopes fingerprint marine evaporites as the source of high-salinity ore fluids in iron oxide–copper–gold deposits, Carajas mineral province (Brazil). Geology 36:743–746

    Google Scholar 

  • Zhu YF, Zeng YS, Jiang N (2001) Geochemistry of the ore-forming fluids in gold deposits from the Taihang mountains, northern China. Int Geol Rev 43:457–473

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim TaleFazel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

TaleFazel, E., Rostami, M. Geology, geochemistry, fluid inclusions and O–H stable isotope constraints on genesis of the Lake Siah Fe-oxide ± apatite deposit, NE Bafq, Central Iran. Acta Geochim 39, 920–946 (2020). https://doi.org/10.1007/s11631-020-00405-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-020-00405-7

Keywords

Navigation