Skip to main content
Log in

Effect of crustal porosity on lunar magma ocean solidification

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

The lunar ferroan anorthosites, formed by plagioclase flotation from the crystallization of the lunar magma ocean, have an age span of over ~ 200 Ma. However, previous thermal models predicted a much shorter time range. We propose that a much smaller thermal conductivity of anorthositic crust due to its high porosity may have delayed the solidification of the lunar magma ocean. Our thermal simulation results, using the thermal conductivity of porous lunar crust, show that crystallization of a 1000 km deep magma ocean could be prolonged to tens of millions of years, and up to 180 Ma under some extreme conditions. The porous crust alone can’t explain the large crustal age span, however. Other circumstances must be taken into consideration, such as a thick lunar soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alibert C, Norman MD, Mcculloch MT (1994) An ancient Sm–Nd age for a ferroan noritic anorthosite clast from lunar breccia 67016. Geochim Cosmochim Acta 58(13):2921–2926

    Article  Google Scholar 

  • Anders E, Grevesse N (1989) Abundances of the elements: meteoritic and solar. Geochem Cosmochim Acta 53(1):197–214

    Article  Google Scholar 

  • Besserer J, Nimmo F, Wieczorek MA, Smith DE, Zuber MT (2013) GRAIL constraints on vertical and lateral density structure of lunar crust, AGUFM: G31B-04

  • Besserer J, Nimmo F, Wieczorek MA, Weber RC, Kiefer WS, Mcgovern PJ, Smith DE, Zuber MT (2014) GRAIL constraints on the vertical density structure of the lunar crust, LPI(1777):2407

  • Binder AB, Lange MA (1980) On the thermal history, thermal state, and related tectonism of a moon of fission origin. J Geophys Res Solid Earth 85(B6):3194–3208

    Article  Google Scholar 

  • Borg L, Norman M, Nyquist L, Bogard D, Snyder G, Taylor L, Lindstrom M (1999) Isotopic studies of ferroan anorthosite 62236: a young lunar crustal rock from a light rare-earth-element-depleted source. Geochim Cosmochim Acta 63(17):2679–2691

    Article  Google Scholar 

  • Borg LE, Connelly JN, Boyet M, Carlson RW (2011) Chronological evidence that the Moon is either young or did not have a global magma ocean. Nature 477(7362):70–72

    Article  Google Scholar 

  • Borg LE, Gaffney AM, Shearer CK (2015) A review of lunar chronology revealing a preponderance of 4.34–4.37 Ga ages. Meteorit Planet Sci 50(4):715–732

    Article  Google Scholar 

  • Bouvier A, Wadhwa M (2010) The age of the Solar System redefined by the oldest Pb–Pb age of a meteoritic inclusion. Nat Geosci 3(9):637–641

    Article  Google Scholar 

  • Cameron AG, Ward WR (1976) The origin of the Moon. In: 7th lunar and planetary science conference, pp 120–122

  • Canup RM, Asphaug E (2001) Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature 412(6848):708–712

    Article  Google Scholar 

  • Carlson RW, Lugmair GW (1988) The age of ferroan anorthosite 60025: oldest crust on a young Moon? Earth Planet Sci Lett 90(2):119–130

    Article  Google Scholar 

  • Cermak V, Rybach L (1982) Thermal conductivity and specific heat of minerals and rocks. In: Angenheister G (ed) Physcial properties of rocks. Springer, Berlin, pp 305–403

    Google Scholar 

  • Clauser C, Huenges E (1995) Thermal Conductivity of Rocks and Minerals. In: Ahrens TJ (ed) Rock physics and phase relations: a handbook of physical constants. American Geophysical Union, Washington, pp 105–126

    Google Scholar 

  • Consolmagno GJ, Britt DT, Macke RJ (2008) The significance of meteorite density and porosity. Geochemistry 68(1):1–29

    Article  Google Scholar 

  • Craddock RA, Howard AD (2000) Simulated degradation of lunar impact craters and a new method for age dating farside mare deposits. J Geophys Res Planets 105(E8):20387–20401

    Article  Google Scholar 

  • Dalrymple GB, Ryder G (1996) Argon-40/argon-39 age spectra of Apollo 17 highlands breccia samples by laser step heating and the age of the serenitatis basin. J Geophys Res Planets 101(E11):26069–26084

    Article  Google Scholar 

  • Daubar IJ, Kring DA, Swindle TD, Jull AJT (2002) Northwest Africa 482: a crystalline impact-melt breccia from the lunar highlands. Meteorit Planet Sci 37(12):1797–1813

    Article  Google Scholar 

  • Dygert N, Lin J-F, Marshall EW, Kono Y, Gardner JE (2017) A low viscosity lunar magma ocean forms a stratified anorthitic flotation crust with mafic poor and rich units. Geophys Res Lett 44(22):11282–211291

    Article  Google Scholar 

  • Elardo SM, Draper DS, Shearer CK Jr (2011) Lunar Magma Ocean crystallization revisited: bulk composition, early cumulate mineralogy, and the source regions of the highlands Mg-suite. Geochim Cosmochim Acta 75(11):3024–3045

    Article  Google Scholar 

  • Elkins-Tanton LT (2008) Linked magma ocean solidification and atmospheric growth for Earth and Mars. Earth Planet Sci Lett 271(1):181–191

    Article  Google Scholar 

  • Elkins-Tanton LT (2012) Magma oceans in the inner solar system. Annu Rev Earth Planet Sci 40:113–139

    Article  Google Scholar 

  • Elkins-Tanton LT, Burgess S, Yin Q-Z (2011) The lunar magma ocean: reconciling the solidification process with lunar petrology and geochronology. Earth Planet Sci Lett 304(3–4):326–336

    Article  Google Scholar 

  • Gaffney AM, Borg LE, Depaolo DJ, Irving AJ (2008) Age and isotope systematics of Northwest Africa 4898, a new type of highly-depleted Mare Basalt. In: Lunar and planetary science conference, pp 1877

  • Grange ML, Norman MD, Bennett V (2016) A possible 4.1–4.2 Ga impact event recorded in lunar meteorite Northwest Africa 5000. LPICo 79.1921:6300

  • Güttler C, Krause M, Geretshauser RJ, Speith R, Blum J (2009) The physics of protoplanetesimal dust agglomerates. IV. Towards a dynamical collision model. Astrophys J 701(1):130

    Article  Google Scholar 

  • Haenel R, Rybach L, Stegena L (1988) Handbook of terrestrial heat-flow density determination. Springer, Dordrecht, pp 125–142

    Book  Google Scholar 

  • Hagee B, Bernatowicz TJ, Podosek ML, Bunett DS, Tatsumoto M (1990) Actinide abundances in ordinary chondrites. Geochim Cosmochim Acta 54(10):2847–2858

    Article  Google Scholar 

  • Han SC, Schmerr N, Neumann G, Holmes S (2014) Global characteristics of porosity and density stratification within the lunar crust from GRAIL gravity and Lunar Orbiter Laser Altimeter topography data. Geophys Res Lett 41(6):1882–1889

    Article  Google Scholar 

  • Hartmann WK, Davis DR (1975) Satellite-sized planetesimals and lunar origin. Icarus 24(4):504–515

    Article  Google Scholar 

  • Henke S, Gail HP, Trieloff M, Schwarz WH, Kleine T (2012) Thermal evolution and sintering of chondritic planetesimals. Astron Astrophys 537:A45

    Article  Google Scholar 

  • Herbert F, Drake MJ, Sonett CP, Wiskerchen MJ (1977a) Thermal history of lunar magma ocean. In: Lunar and planetary science conference, pp 424–426

  • Herbert FL, Drake MJ, Sonett CP, Wiskerchen MJ (1977b) Some constraints on the thermal history of the lunar magma ocean. In: Lunar and planetary science conference proceedings, vol 1, pp 573–582

  • Hevey PJ, Sanders IS (2006) A model for planetesimal meltdown by 26Al and its implications for meteorite parent bodies. Meteorit Planet Sci 41(1):95–106

    Article  Google Scholar 

  • Horai KI, Simmons G (1971) Thermal conductivity of rock-forming minerals. Earth Planet Sci Lett 6(5):359–368

    Article  Google Scholar 

  • Hui H, Peslier AH, Zhang Y, Neal CR (2013) Water in lunar anorthosites and evidence for a wet early Moon. Nat Geosci 6(3):177–180

    Article  Google Scholar 

  • Keihm SJ, Langseth MG (1977) Lunar thermal regime to 300 km. In: Lunar & planetary science conference proceedings, vol 1, pp 499–514

  • Khan A, Pommier A, Neumann GA, Mosegaard K (2013) The lunar moho and the internal structure of the Moon: a geophysical perspective. Tectonophysics 609(1):331–352

    Article  Google Scholar 

  • Kiefer WS, Macke RJ, Britt DT, Irving AJ, Consolmagno GJ (2012a) Density and porosity of lunar feldspathic rocks and implications for lunar gravity modeling. In: Second conference on the lunar highlands crust, vol 1677, pp 31–32

  • Kiefer WS, Macke RJ, Britt DT, Irving AJ, Consolmagno GJ (2012b) The density and porosity of lunar rocks. Geophys Res Lett 39(7):7201

    Article  Google Scholar 

  • Kirsten T, Horn P (1974) Chronology of the Taurus-Littrow region. III-Ages of mare basalts and highland breccias and some remarks about the interpretation of lunar highland rock ages. In: Lunar and planetary science conference proceedings, vol 2, pp 1451–1475

  • Langseth MG, Keihm SJ, Peters K (1976) Revised lunar heat-flow values. In: Lunar and planetary science conference proceedings, vol 3, pp 3143–3171

  • Lin Y, Tronche EJ, Steenstra ES, Westrenen WV (2017) Evidence for an early wet Moon from experimental crystallization of the lunar magma ocean. Nat Geosci 10(1):14

    Article  Google Scholar 

  • Lisse C, Chen C, Wyatt M, Morlok A, Song I, Bryden G, Sheehan P (2009) Abundant circumstellar silica dust and sio gas created by a giant hypervelocity collision in the ~12 Myr HD172555 system. Astrophys J 701:2019–2032

    Article  Google Scholar 

  • Lupu R, Zahnle K, Marley M, Schaefer L, Fegley B, Morley C, Cahoy K, Freedman R, Fortney J (2014) The atmospheres of earthlike planets after giant impact events. Astrophys J 784:27–46

    Article  Google Scholar 

  • Marks N, Borg L, Gaffney A, Shearer C, Burger P (2014) Additional evidence for young ferroan anorthositic magmatism on the moon from Sm-Nd isotopic measurements of 60016 Clast 3A. In: Lunar and planetary science conference, p 1129

  • Maurice M, Tosi N, Schwinger S, Breuer D, Kleine T (2020) A long-lived magma ocean on a young Moon. Sci Adv 6(28):eaba8949

    Article  Google Scholar 

  • McLeod C (2016) Lunar Magma Ocean, Size. In: Cudnik B (ed) Encyclopedia of lunar science. Springer , Cham, pp 1–15

    Google Scholar 

  • Meyer C, Williams IS, Compston W (1996) Uranium-lead ages for lunar zircons: evidence for a prolonged period of granophyre formation from 4.32 to 3.88 Ga. Meteorit Planet Sci 31(3):370–387

    Article  Google Scholar 

  • Meyer J, Elkins-Tanton L, Wisdom J (2010) Coupled thermal–orbital evolution of the early Moon. Icarus 208(1):1–10

    Article  Google Scholar 

  • Morse S (2011) The fractional latent heat of crystallizing magmas. Am Miner 96(4):682–689

    Article  Google Scholar 

  • Murase T, McBirney AR (1970) Thermal conductivity of lunar and terrestrial igneous rocks in their melting range. Science 170(3954):165–167

    Article  Google Scholar 

  • Murthy VR, Evensen NM, Jahn BM, Coscio MR Jr (1971) Rb–Sr ages and elemental abundances of K, Rb, Sr, and Ba in samples from the Ocean of Storms. Geochim Cosmochim Acta 35(11):1139–1153

    Article  Google Scholar 

  • Nakamura Y, Dorman J, Duennebier F, Lammlein D, Latham G (1975) Shallow lunar structure determined from the passive seismic experiment. Moon 13(1–3):57–66

    Article  Google Scholar 

  • Norman MD, Borg LE, Nyquist LE, Bogard DD (2003) Chronology, geochemistry, and petrology of a ferroan noritic anorthosite clast from Descartes breccia 67215: clues to the age, origin, structure, and impact history of the lunar crust. Meteorit Planet Sci 38(4):645–661

    Article  Google Scholar 

  • Nyquist LE, Bansal BM, Wooden JL, Wiesmann H (1977) Sr-isotopic constraints on the petrogenesis of Apollo 12 mare basalts. In: Lunar and planetary science conference proceedings, vol 2, pp 1383–1415

  • Nyquist L, Bogard D, Garrison D, Bansal B, Wiesmann H, Shih C-Y (1991) Thermal resetting of radiometric ages. I: experimental investigation. In: Lunar and planetary science conference, p 985

  • Nyquist LE, Shih CY, Reese Y, Bogard DD (2005) Age of lunar meteorite LAP02205 and implications for impact-sampling of planetary surfaces. Lunar and planetary science conference, p 1374

  • Nyquist L et al (2006) Feldspathic clasts in Yamato-86032: remnants of the lunar crust with implications for its formation and impact history. Geochim Cosmochim Acta 70(24):5990–6015

    Article  Google Scholar 

  • Nyquist LE, Shih CY, Reese YD (2007) Sm–Nd and Rb–Sr Ages for MIL 05035: implications for surface and mantle sources. In: Lunar and planetary science conference, p 1702

  • Nyquist LE, Shih CY, Reese YD, Irving AJ (2009) Sm–Nd and Rb–Sr ages for Northwest Africa 2977, a Young Lunar Gabbro from the PKT. Meteorit Planet Sci Suppl 72:5347

    Google Scholar 

  • Nyquist LE, Shih CY, Reese YD, Park J, Bogard DD, Garrison DH, Yamaguchi A (2010) Lunar crustal history recorded in lunar anorthosites. In: Lunar and planetary science conference, p 1383

  • Ross RG, Andersson P, Sundqvist B, Backstrom G (1984) Thermal conductivity of solids and liquids under pressure. Rep Prog Phys 47(10):1347

    Article  Google Scholar 

  • Rybacki E, Dresen G (2000) Dislocation and diffusion creep of synthetic anorthite aggregates. J Geophys Res Solid Earth 105(B11):26017–26036

    Article  Google Scholar 

  • Sakai R, Nagahara H, Ozawa K, Tachibana S (2014) Composition of the lunar magma ocean constrained by the conditions for the crust formation. Icarus 229:45–56

    Article  Google Scholar 

  • Sass JH (1965) The thermal conductivity of fifteen feldspar specimens. J Geophys Res 70(16):4064–4065

    Article  Google Scholar 

  • Saxena P, Elkins-Tanton L, Petro N, Mandell A (2017) A Model of the Primordial Lunar Atmosphere. Earth Planet Sci Lett 474:198–205

    Article  Google Scholar 

  • Schön JH (2015) Chapter 9—thermal properties. In: Schön JH (ed) Physical properties of rocks: fundamentals and principles of petrophysics. Elsevier, Amsterdam, pp 369–414

    Chapter  Google Scholar 

  • Schumacher S, Breuer D (2006) Influence of a variable thermal conductivity on the thermochemical evolution of Mars. J Geophys Res-Planet 111(E2):1–19

    Article  Google Scholar 

  • Schwenn MB, Goetze C (1978) Creep of olivine during hot-pressing. Tectonophysics 48(1):41–60

    Article  Google Scholar 

  • Sclater JG, Christie PAF (1980) Continental stretching: an explanation of the post-Mid-Cretaceous subsidence of the central North Sea Basin. J Geophys Res Solid Earth 85(B7):3711–3739

    Article  Google Scholar 

  • Seipold U, Gutzeit W (1980) Measurements of the thermal properties of rocks under extreme conditions. Phys Earth Planet Inter 22(3):267–271

    Article  Google Scholar 

  • Shih CY, Nyquist LE, Bogard DD, Wooden JL, Bansal BM, Wiesmann H (1985) Chronology and petrogenesis of a 1.8 g lunar granitic clast:14321,1062. Geochim Cosmochim Acta 49(2):411–426

    Article  Google Scholar 

  • Smith PM, Asimow PD (2005) Adiabat_1ph: A new public front-end to the MELTS, pMELTS, and pHMELTS models. Geochem Geophys Geosyst 6(2):1–8

    Article  Google Scholar 

  • Smith J, Anderson A, Newton R, Olsen E, Crewe A, Isaacson M, Johnson D, Wyllie P (1970) Petrologic history of the Moon inferred from petrography, mineralogy and petrogenesis of Apollo 11 rocks. Geochimi Cosmochim Acta Suppl 1:897–925

    Google Scholar 

  • Snyder GA, Taylor LA, Neal CR (1992) A chemical model for generating the sources of mare basalts: combined equilibrium and fractional crystallization of the lunar magmasphere. Geochim Cosmochim Acta 56(10):3809–3823

    Article  Google Scholar 

  • Solomatov VS (2007) Magma oceans and primordial mantle differentiation. In: Schubert G (ed) Treatise on geophysics. Elsevier, Amsterdam, pp 91–119

    Chapter  Google Scholar 

  • Solomon SC, Longhi J (1977) Magma oceanography. I-Thermal evolution. In: Lunar and planetary science conference proceedings, vol 1, pp 583–899

  • Spera FJ (1992) Lunar magma transport phenomena. Geochim Cosmochim Acta 56(6):2253–2265

    Article  Google Scholar 

  • Stettler A, Eberhardt P, Geiss J, Grögler N, Maurer P (1973) Ar39-Ar40 ages and Ar37-Ar38 exposure ages of lunar rocks. In: Lunar and planetary science conference proceedings, vol 4, pp 1865–1888

  • Taylor R (1982) The chemical composition of the planets. In: Taylor S (ed) Planetary science: A lunar perspective. Lunar and Planetary Institute, Texas, pp 375–408

    Google Scholar 

  • Taylor R (2016) The Moon. Acta Geochimica 35(1):1–13

    Article  Google Scholar 

  • Toksöz MNDAM, Solomon SC, Anderson KR (1974) Structure of the Moon. Rev Geophys 12(4):539–567

    Article  Google Scholar 

  • Turcotte D, Schubert G (2014) Heat transfer. In: Turcotte D, Schubert G (eds) Geodynamics, 3rd edn. Cambridge University Press, New York, pp 163–232

    Chapter  Google Scholar 

  • Vosteen HD, Schellschmidt R (2003) Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rock. Phys Chem Earth 28(9):499–509

    Article  Google Scholar 

  • Walker D, Hager BH, Hayes JF (1980) Mass and heat transport in a lunar magma ocean by sinking blobs. In: Lunar and planetary science conference, pp 1196–1198

  • Warren PH (1993) A concise compilation of petrologic information on possibly pristine nonmare Moon rocks. Am Miner 78(3–4):360–376

    Google Scholar 

  • Warren PH (2011) Ejecta–megaregolith accumulation on planetesimals and large asteroids. Meteorit Planet Sci 46(1):53–78

    Google Scholar 

  • Wieczorek MA (2006) The constitution and structure of the lunar interior. Rev Mineral Geochem 60(1):221–364

    Article  Google Scholar 

  • Wieczorek MA, Phillips RJ (2000) The “Procellarum KREEP Terrane”: implications for mare volcanism and lunar evolution. J Geophys Res 105(E8):20417–20430

    Article  Google Scholar 

  • Wieczorek MA et al (2013) The crust of the Moon as seen by GRAIL. Science 339(6120):671–675

    Article  Google Scholar 

  • Wieczorek MA et al. (2013b) High-resolution estimates of lunar crustal density and porosity from the GRAIL extended mission. In: Lunar and planetary science conference

  • Wood JA, Dickey J Jr, Marvin UB, Powell B (1970) Lunar anorthosites and a geophysical model of the moon. Geochim Cosmochim Acta Suppl 1:965–988

    Google Scholar 

  • Woolum D, Cassen P (1999) Astronomical constraints on nebular temperatures: implications for planetesimal formation. Meteorit Planet Sci 34:897–907

    Article  Google Scholar 

  • Xu YK, Li XY, Zhu D, Wang SJ (2016) Evolution of magma ocean and crust formation under initial conductive lid. Acta Pet Sin 32(1):1–9

    Google Scholar 

  • Yin Q, Jacobsen SB, Yamashita K, Blicherttoft J, Télouk P, Albarède F (2002) A short timescale for terrestrial planet formation from Hf–W chronometry of meteorites. Nature 418(6901):949–952

    Article  Google Scholar 

  • Yomogida K, Matsui T (1984) Multiple parent bodies of ordinary chondrites. Earth Planet Sci Lett 68(1):34–42

    Article  Google Scholar 

  • Yukutake H, Shimada M (1978) Thermal conductivity of NaCl, MgO, coesite and stishovite up to 40 kbar. Phys Earth Planet Inter 17(3):193–200

    Article  Google Scholar 

  • Zahnle K, Arndt N, Cockell C, Halliday A, Nisbet E, Selsis F, Sleep N (2007) Emergence of a habitable planet. Space Sci Rev 129:35–78

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Kiefer S. Walter for the discussion on the porosities of lunar samples. Dr. Linda Elkins-Tanton provided many useful suggestions and details of thermal modeling. Dr. Phonsie J. Hevey and Dr. Ian S. Sanders offered us insight into sintering process. This work was financially supported by the National Natural Science Foundation of China (Grants Nos. 41773064, 41931077), the Strategic Priority Program of the Chinese Academy of Sciences (No. XDB41020300), Youth Innovation Promotion Association of CAS, the Key Research Program of the Chinese Academy of Sciences (XDPB11), Beijing Municipal Science and Technology Commission (Z181100002918003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiongyao Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Xu, Y. & Li, X. Effect of crustal porosity on lunar magma ocean solidification. Acta Geochim 40, 123–134 (2021). https://doi.org/10.1007/s11631-020-00449-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-020-00449-9

Keywords

Navigation