Skip to main content
Log in

Characterization of the Martensitic Transformation in NiPtAl Alloy Using Digital Holographic Imaging

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Surface reliefs due to phase transformations in a 56.8Ni-5.6Pt-37.6Al at. pct alloy were characterized in situ using digital holographic imaging during thermal cycling from room temperature up to 405 K (132 °C). The 3D images of the surface revealed that the austenite plates formed during heating are exactly the same for each cycle, which is not the case for the martensite plates formed during cooling. The martensite start temperature was found to vary by up to ~ 20 K from one grain to another within the same specimen. The absence of Ni3Al γ′ precipitates, due to the relatively high Al content, results in the propagation of the martensitic transformation over grains up to a millimeter in size. Bright-field optical imaging showed the formation of large martensite plates in some grains, with cracks perpendicular to these plates, upon cycling. Cracks were also observed at grain boundaries and could be related to the height variations across the grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. N.P. Padture, M. Gell, H. Jordan, Sci., 2002, vol. 296, pp. 280-284.

    Article  CAS  Google Scholar 

  2. P. Deb, D.H. Boone, T.F. Manley (1987) J. Vac. Sci. Technol., 5, 3366-3367.

    Article  CAS  Google Scholar 

  3. VK Tolpygo, Clarke DR., Acta Mater., 2004, vol. 52, pp. 5115–27.

    CAS  Google Scholar 

  4. VK Tolpygo, Clarke DR., Acta Mater., 2004, vol. 52, pp. 5129–41.

    CAS  Google Scholar 

  5. S Dryepondt, JR Porter and D.R. Clarke, Acta Mater., 2009, vol. 57, pp. 1717-23.

    Article  CAS  Google Scholar 

  6. S Dryepondt and D.R. Clarke, Scr. Mater., 2009, vol. 60, pp. 917-920.

    Article  CAS  Google Scholar 

  7. R. Nutzel, E. Affeldt and M. Goken, Int. J. Fatigue., 2008, vol. 30, pp. 313–317.

    Article  Google Scholar 

  8. D.S. Balint and J.W. Hutchinson, J. Mech. Phys. Solids., 2005, vol. 53, pp. 949-973.

    Article  CAS  Google Scholar 

  9. Y. Zhang, J.A. Haynes, B.A. Pint, I.G. Wright, Surf. Coat. Technol., 2003, vol. 163-164, pp. 19-24.

    Article  Google Scholar 

  10. D Pan, MW Chen, PK Wright, KJ Hemker, Acta Mater., 2003, vol. 51, pp. 2205-2217.

    Article  CAS  Google Scholar 

  11. MW Chen, RT Ott, TC Hufnagel, P.K. Wright, KJ Hemker, Surf. Coat. Technol., 2003, vol. 163-164, pp. 25-30

    Article  Google Scholar 

  12. MW Chen, ML Glynn, RT Ott, TC Hufnagel, KJ Hemker, Acta Mater., 2003, vol. 51, pp. 4279-4294.

    Article  CAS  Google Scholar 

  13. B.A. Pint, S.A. Speakman, C.J. Rawn and Y. Zhang, JOM, 2006, vol. 58 (1), pp. 47-52.

    Article  CAS  Google Scholar 

  14. S. Rosen and J.A. Goebel, Trans. TMS-AIME, 1968, vol. 242, pp. 722-724.

    CAS  Google Scholar 

  15. J.L. Smialek, R.F. Hehemann, Metall. Trans., 1973, vol. 4, pp. 1571-1575.

    CAS  Google Scholar 

  16. D.J. Sordelet, M.F. Besser, R.T. Ott, B.J. Zimmerman, W.D. Porter and B. Gleeson, Acta Mater., 2007, vol. 55, pp. 2433–2441.

    Article  CAS  Google Scholar 

  17. B. Thiesing, C. J. Mann, S. Dryepondt, Appl. Opt., 2013, vol. 52 (19), pp. 4426-4432.

    Article  CAS  Google Scholar 

  18. E.P. George and C.T. Liu, J. Mater. Res., 1990, vol. 5 (4), pp. 754-762.

    Article  CAS  Google Scholar 

  19. R. Darolia, JOM, 1991, vol. 3, pp. 44-49.

    Article  Google Scholar 

  20. Ph. Boullay, D. Schryvers, J.M. Ball, Acta Mater., 2003, vol. 51, pp. 1421-1436.

    Article  CAS  Google Scholar 

  21. M. Clancy, M.J. Pomeroy, C. Dickinson, J. Alloys. Compd., 2012, vol. 523, pp. 11-15.

    Article  CAS  Google Scholar 

  22. M. Clansy, Ph.D. Thesis, University of Limerick, https://ulir.ul.ie/handle/10344/2537.

  23. B. Gleeson, W. Wang, S. Hayashi, Mater. Sci. Forum., 2004, vol. 461–464, pp. 213-222.

    Article  Google Scholar 

  24. R.J. Thompson, J.-C. Zhao, K.J. Hemker, Intermetallics, 2010, vol. 18, pp. 796–802.

    Article  CAS  Google Scholar 

  25. Y.X. Cui, L. Zhen, D.Z. Yang, G.P. Bi, Q. Wang, Mater. Lett., 2001, vol. 48, pp. 121-126.

    Article  CAS  Google Scholar 

  26. M.Z. Alam, D. Chatterjee, S.V. Kamat, V. Jayaram, D.K. Das, Mater. Sci. Eng. A, 2010, vol. 527 (26), pp. 7147-7150.

    Article  Google Scholar 

  27. H.S. Yang and H. K. D. H. Bhadeshia, Scr. Mater., 2009, vol. 60, pp. 493–95.

    Article  CAS  Google Scholar 

  28. V. A. Esin, V. Maurel, P. Breton, A. Koster, S. Selezneff, Acta Mater., 2016, vol. 105, 505-518

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge T. Jordan and A. Passian for assistance with the experimental work and B. Pint, Y. Yamamoto, and M. Brady for reviewing the manuscript. This research was sponsored by the U.S. Department of Energy through the Laboratory Directed Research and Development (Seed) Program at Oak Ridge National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin P. Thiesing.

Additional information

Manuscript submitted February 7, 2018.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 53596 kb)

Supplementary material 2 (MP4 17067 kb)

Supplementary material 3 (MP4 27529 kb)

Supplementary material 4 (MP4 118698 kb)

Supplementary material 5 (MP4 49565 kb)

Supplementary material 6 (MP4 50369 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thiesing, B.P., Dryepondt, S., Leonard, D. et al. Characterization of the Martensitic Transformation in NiPtAl Alloy Using Digital Holographic Imaging. Metall Mater Trans A 49, 5259–5270 (2018). https://doi.org/10.1007/s11661-018-4866-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4866-y

Navigation