Skip to main content
Log in

Estimated and Stationary Atmospheric Corrosion Rate of Carbon Steel, Galvanized Steel, Copper and Aluminum in Iran

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Atmospheric corrosion of structural metals including aluminum, copper, carbon steel and galvanized steel has been investigated in various areas in Iran based on meteorological data and test coupon mass loss. Using annual average temperature and relative humidity (RH), the time of wetness (TOW, τ) of 51 cities in Iran was obtained in 2012. Coincidentally, sulfur dioxide (SO2) and chloride ion (Cl) concentrations were measured in these cities; then, according to ISO 9223, the predicted corrosion rate (rcorr) of aluminum, copper, carbon steel and galvanized steel was calculated. Geographical information system (GIS) modeling of TOW, air pollutants (sulfur dioxide and chloride ion) and estimated rcorr were extracted. The mentioned metallic coupons were exposed to the outdoor atmosphere of 15 test sites for up to 12 months to measure the actual corrosion rate of metals. The corrosion products were characterized using scanning electron microscopy and an X-ray diffractometer. The results show that the atmospheric corrosivity of Iran as a developing country is mainly affected by the air temperature, RH and Cl deposition rate. The atmosphere at shorelines is much more aggressive. Predicting the corrosion loss, the northern coastlines show a more corrosive atmosphere. On the contrary, coupons fixed at the southern coastlines are severely corroded compared with those fixed at the northern shorelines. Chabahar has the most corrosive atmosphere for carbon steel, galvanized steel and copper coupons where their actual corrosion rates (CRs) are 514.68, 10.25 and 11.01 μm/year, respectively. Aluminum coupons presented the best corrosion resistance at all test sites, and their CR were approximately nil. The result shows that models developed by ISO 9223 are not appropriate for predicting the atmospheric corrosion of aluminum, copper, galvanized steel and carbon steel in most areas in Iran.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  1. B.N. Popov: in Corrosion Engineering, Elsevier, Amsterdam, 2015, pp. 451–80.

  2. P. A. Schweitzer: Atmospheric degradation and corrosion control, CRC Press, New York, 1999, pp. 1-5.

    Google Scholar 

  3. J.J.S. Rodrguez, F.J.S. Hernndez, and J.E.G. Gonzlez: Corrosion Science, 2003, vol. 45 (4), pp. 799-815.

    Google Scholar 

  4. V. Kucera and E. Mattsson: in Corrosion Mechanisms, 1987, pp. 211–84.

  5. ISO 9223: Classification of Corrosivity of Atmospheres, International Organization for Standardization (ISO), 2012.

  6. C. Leygraf, I. O. Wallinder, J. Tidblad, and T. Graedel: Atmospheric corrosion, John Wiley & Sons, New Jersey, 2016, pp. 1.

    Google Scholar 

  7. Z. Dan, I. Muto, and N. Hara: Corrosion Science,2012, vol. 57, pp. 22-29.

    CAS  Google Scholar 

  8. S. Oesch, and M. Faller: Corrosion Science,1997, vol. 39 (9), pp. 1505-30.

    CAS  Google Scholar 

  9. C. Yi, X. Du, Y. Yang, Y. Chen, G. Wei, Z. Yang, and Z. Zhang: Int. J. Electrochem. Sci.,2017, vol. 12, pp. 3597-3613.

    CAS  Google Scholar 

  10. S. Sharma: Journal of the Electrochemical Society,1978, vol. 125 (12), pp. 2005-2011.

    CAS  Google Scholar 

  11. S. Feliu, M. Morcillo, and S. Feliu: Corrosion Science,1993, vol. 34 (3), pp. 403-14.

    CAS  Google Scholar 

  12. Y. Cai, Y. Zhao, X. Ma, K. Zhou, and Y. Chen: Corrosion Science,2018, vol. 137, pp. 163-175.

    CAS  Google Scholar 

  13. S. Feliu, M. Morcillo, and B. Chico: CORROSION,1999, vol. 55 (9), pp. 883-891.

    CAS  Google Scholar 

  14. ISO 8565: Metals and Alloys—Atmospheric Corrosion Testing (General Requirements), 2011.

  15. S. Mridha: in Reference Module in Materials Science and Materials Engineering, Elsevier, Amsterdam, 2016.

  16. A. Castañeda, C. Valdés, and F. Corvo: Materials and Corrosion,2018, vol. 69 (10), pp. 1462-1477.

    Google Scholar 

  17. R. Vera, D. Delgado, and B. M. Rosales: Corrosion Science,2007, vol. 49 (5), pp. 2329-2350.

    CAS  Google Scholar 

  18. J. Vilche, F. Varela, G. Acuna, E. Codaro, B. Rosales, A. Fernandez, and G. Moriena: Corrosion Science,1995, vol. 37 (6), pp. 941-961.

    CAS  Google Scholar 

  19. R. J. Cordner: British Corrosion Journal,1990, vol. 25 (2), pp. 115-118.

    CAS  Google Scholar 

  20. An Australia-Wide Map of Corrosivity: A GIS Approach, NRC Research Press, Ottawa, ON, Canada, 1999.

  21. I. S. Cole, T. H. Muster, D. A. Paterson, S. A. Furman, G. S. Trinidad, and N. Wright: Materials Science Forum,2007, vol. 561-565, pp. 2209-2212.

    Google Scholar 

  22. M. O. G. Portella, K. F. Portella, P. A. M. Pereira, P. C. Inone, K. J. C. Brambilla, M. S. Cabussú, D. P. Cerqueira, and R. N. Salles: Procedia Engineering,2012, vol. 42, pp. 171-185.

    Google Scholar 

  23. Y. C. Sica, E. D. Kenny, K. F. Portella, and D. F. C. Filho: J. Braz. Chem. Soc.,2007, vol. 18 (1), pp. 153-166.

    CAS  Google Scholar 

  24. M. Morcillo, B. Chico, D. de la Fuente, and J. Simancas: International Journal of Corrosion,2012, vol. 2012, pp. 24.

    Google Scholar 

  25. E. Del Angel, R. Vera, and F. Corvo: Int. J. Electrochem. Sci., 2015, vol. 10 (9), pp. 7985-8004.

    Google Scholar 

  26. F. Corvo, T. Pérez, Y. Martin, J. Reyes, L. Dzib, J. González-Sánchez, and A. Castañeda: in Environmental Degradation of Infrastructure and Cultural Heritage in Coastal Tropical Climate., Transworld Research Network, Kerala, India. Año, 2009, pp. 1–34.

  27. F. Corvo, C. Haces, N. Betancourt, L. Maldonado, L. Véleva, M. Echeverria, O. T. De Rincón, and A. Rincon: Corrosion Science,1997, vol. 39 (5), pp. 823-833.

    CAS  Google Scholar 

  28. L. Maldonado, and L. Veleva: Materials and Corrosion,1999, vol. 50 (5), pp. 261-266.

    CAS  Google Scholar 

  29. F. Corvo, T. Perez, L. R. Dzib, Y. Martin, A. Castañeda, E. Gonzalez, and J. Perez: Corrosion Science,2008, vol. 50 (1), pp. 220-230.

    CAS  Google Scholar 

  30. M. Tullmin and P.R. Roberge: in Uhlig’s Corrosion Handbook, 2nd ed., Wiley, New York, 2000, pp. 305–321.

  31. H. Ambler, and A. Bain: Journal of Applied Chemistry,1955, vol. 5 (9), pp. 437-467.

    CAS  Google Scholar 

  32. B. Callaghan: Atmospheric Corrosion Testing in Southern Africa, Wiley, 1982, pp. 893–912.

  33. J. Dong, E. Han, and W. Ke: Sci. Technol. Adv. Mater.,2007, vol. 8, pp. 559.

    CAS  Google Scholar 

  34. M. Natesan, G. Venkatachari, and N. Palaniswamy: Corrosion Science,2006, vol. 48 (11), pp. 3584-3608.

    CAS  Google Scholar 

  35. L. T. H. Lien, P. T. San, and H. L. Hong: Science and Technology of Advanced Materials,2007, vol. 8 (7), pp. 552-558.

    CAS  Google Scholar 

  36. H. Ambler: Journal of Applied Chemistry,1960, vol. 10 (5), pp. 213-225.

    CAS  Google Scholar 

  37. K. Slamova, and M. Koehl: Materials and Corrosion,2017, vol. 68 (1), pp. 20-29.

    CAS  Google Scholar 

  38. K. Kreislova and D. Knotkova: Materials, 2017, vol. 10, pp. 394.

    Google Scholar 

  39. H.E. Townsend: Outdoor Atmospheric Corrosion (ASTM Special Technical Publication, STP 1421), ASTM, 2002, pp. 1–390.

  40. G. Koch, J. Varney, N. Thompson, O. Moghissi, M. Gould, and J. Payer: Report No. NACE International IMPACT Report, Houston, 2016.

  41. C.D. Bryan: The National Geographic Society, 100 Years of Adventure and Discovery, Abradale/Abrams, 2001, pp. 5–25.

  42. K.K. Haftlang and K.K.H. Lang: The Book of Iran: A Survey of the Geography of Iran, Alhoda UK, 2003, pp. 70–100.

  43. V. V. Barthold: An historical geography of Iran, Princeton University Press, Princeton, 2014, pp. 10-47.

    Google Scholar 

  44. M. H. Sowlat, K. Naddafi, M. Yunesian, P. L. Jackson, S. Lotfi, and A. Shahsavani: CLEAN–Soil, Air, Water,2013, vol. 41 (12), pp. 1143-1151.

    CAS  Google Scholar 

  45. S. Keshmiri, S. Pordel, A. Raeesi, I. Nabipour, H. Darabi, S. Jamali, S. Dobaradaran, G. Heidari, A. Ostovar, B. Ramavandi, R. Tahmasebi, M. Marzban, A. Khajeian, A. Sanati, and S. Farrokhi: Iranian South Medical Journal,2018, vol. 21 (2), pp. 162-185.

    Google Scholar 

  46. S. Abdollahi, Z. Raoufi, I. Faghiri, A. Savari, Y. Nikpour, and A. Mansouri: Marine Pollution Bulletin,2013, vol. 71 (1), pp. 336-45.

    CAS  Google Scholar 

  47. B. Chico, D. de la Fuente, I. Díaz, J. Simancas, and M. Morcillo: Materials,2017, vol. 10, pp. 601.

    Google Scholar 

  48. D. Rezakhani, A.A. Fallah, M. Kahram, V. Araban, S.S. Jahromi-Yekta, and N. Agababazadeh: Report No. PMTPN19, Niroo Research Institute, Iran, Tehran, 2015.

  49. ISO 9225: Measurement of Environmental Parameters Affecting Corrosivity of Atmospheres, International Organization for Standardization (ISO), 2012.

  50. ASTM G50: Standard Practice for Conducting Atmospheric Corrosion Tests on Metals, American Society For Testing and Materials (ASTM), 2015.

  51. V. Araban, M. Kahram, and D. Rezakhani: Corrosion Engineering, Science and Technology,2016, vol. 51 (7), pp. 498-506.

    CAS  Google Scholar 

  52. ISO 9226: Determination of Corrosion Rate of Standard Specimens for the Evaluation of Corrosivity of Atmospheres, International Organization for Standardization (ISO), 2012.

  53. ASTM G1:Standard Practice for Preparing,Cleaning, and Evaluation CorrosionTest Specimens, American Society For Testing and Materials (ASTM), 1999.

  54. J. M. Wallace, and P. V. Hobbs: 3 - Atmospheric Thermodynamics, In Atmospheric Science (Second Edition), Academic Press, San Diego, 2006, pp. 63-111.

    Google Scholar 

  55. R. Vera, R. Araya, M. Bagnara, A. Díaz‐Gómez, and S. Ossandón: Materials and Corrosion,2017, vol. 68 (3), pp. 316-328.

    CAS  Google Scholar 

  56. J.C. Guerra, A. Castañeda, F. Corvo, J. J. Howland, and J. Rodríguez: Mater. Corros., 2018, pp. 1–17.

  57. Z. Y. Chen, S. Zakipour, D. Persson, and C. Leygraf: Corrosion,2004, vol. 60 (5), pp. 479-491.

    CAS  Google Scholar 

  58. D. Delgado, and R. Vera: Int. J. Electrochem. Sci, 2013, vol. 8, pp. 7687-7701.

    Google Scholar 

  59. T. Graedel: Journal of the Electrochemical Society,1989, vol. 136 (4), pp. 204C-212C.

    CAS  Google Scholar 

  60. Z. Cui, F. Ge, X. Li, M. Zhu, K. Xiao, C. Dong, and X. Wang: Journal of Wuhan University of Technology-Mater. Sci. Ed.,2017, vol. 32 (3), pp. 633-639.

    CAS  Google Scholar 

  61. R. Vera, D. Delgado, and B. M. Rosales: Corrosion Science,2006, vol. 48 (10), pp. 2882-2900.

    CAS  Google Scholar 

  62. T. Li, X. Li, C. Dong, and Y. Cheng: Journal of Materials Engineering and Performance,2010, vol. 19 (4), pp. 591-598.

    CAS  Google Scholar 

  63. C. Pan, W. Lv, Z. Wang, W. Su, C. Wang, and S. Liu: Journal of Materials Science & Technology,2017, vol. 33 (6), pp. 587-595.

    Google Scholar 

  64. X. Zhang, I. O. Wallinder, and C. Leygraf: Corrosion Science,2014, vol. 85, pp. 15-25.

    Google Scholar 

  65. T. Aastrup, M. Wadsak, C. Leygraf, and M. Schreiner: Journal of the Electrochemical Society,2000, vol. 147 (7), pp. 2543-2551.

    CAS  Google Scholar 

  66. Y. Waseda and S. Suzuki: in Advances in Materials Research, 1st ed., Springer, Berlin, 2006, pp. 1–308.

  67. E. Sosa, R. Cabrera-Sierra, M. T. Oropeza, F. Hernández, N. Casillas, R. Tremont, C. Cabrera, and I. González: Electrochimica Acta,2003, vol. 48 (12), pp. 1665-1674.

    CAS  Google Scholar 

  68. J. G. Castaño, C. A. Botero, A. H. Restrepo, E. A. Agudelo, E. Correa, and F. Echeverría: Corrosion Science,2010, vol. 52 (1), pp. 216-223.

    Google Scholar 

  69. G. Tranchida, M. Clesi, F. Di Franco, F. Di Quarto, and M. Santamaria: Electrochimica Acta,2018, vol. 273, pp. 412-423.

    CAS  Google Scholar 

  70. D. De la Fuente, I. Díaz, J. Simancas, B. Chico, and M. Morcillo: Corrosion Science,2011, vol. 53 (2), pp. 604-617.

    Google Scholar 

  71. J. Alcántara, D. D. L. Fuente, B. Chico, J. Simancas, I. Díaz, and M. Morcillo: Materials,2017, vol. 10, pp. 406.

    Google Scholar 

  72. D. Persson, D. Thierry, and O. Karlsson: Corrosion Science,2017, vol. 126, pp. 152-165.

    CAS  Google Scholar 

  73. R. Vera, F. Guerrero, D. Delgado, and R. Araya: J. Braz. Chem. Soc,2013, vol. 24, pp. 449-458.

    CAS  Google Scholar 

  74. D. De la Fuente, J. Castano, and M. Morcillo: Corrosion science,2007, vol. 49 (3), pp. 1420-36.

    Google Scholar 

  75. E. Almeida, M. Morcillo, and B. Rosales: British Corrosion Journal,2000, vol. 35 (4), pp. 289-296.

    CAS  Google Scholar 

  76. F. E. Harrell: Regression modeling strategies, Springer, Cham, Switzerland, 2014, pp. 1-15.

    Google Scholar 

Download references

Acknowledgments

This research is a part of the “Development of a Comprehensive Corrosion Atlas for the Power Industry of Iran” project and has been supported by the Niroo Research Institute (NRI) of Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Shiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 30, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiri, M., Rezakhani, D. Estimated and Stationary Atmospheric Corrosion Rate of Carbon Steel, Galvanized Steel, Copper and Aluminum in Iran. Metall Mater Trans A 51, 342–367 (2020). https://doi.org/10.1007/s11661-019-05509-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05509-1

Navigation