Skip to main content
Log in

TBM tunneling in extremely hard and abrasive rocks: Problems, solutions and assisting methods

极硬极高磨损岩石中的 TBM 隧道施工: 问题, 解决方案和辅助破岩方法

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Extremely hard and abrasive rocks pose great challenges to the past and ongoing TBM projects by increasing cutter wear and reducing penetration rates. A considerable amount of research has been conducted to improve the performance of TBMs in those challenging grounds by either improving the capacity of TBMs or developing assisting rock breakage methods. This paper first highlights the challenges of hard and abrasive rocks on TBM tunneling through case studies. It then presents the development of hard rock TBMs and reviews the technologies that can be used individually or as assistance to mechanical excavators to break hard rocks. Emphases are placed on technologies of high pressure waterjet, laser and microwave. The state of the art of field and laboratory research, problems and research directions of those technologies are discussed. The assisting methods are technically feasible; however, the main challenges of using those methods in the field are that the energy consumption can be over 10 times high and that the existing equipments have robustness problems. More research should be conducted to study the overall energy consumption using TBMs and the assisting methods. Pulsed waterjet, laser and microwave technologies should also be developed to make the assistance economically viable.

摘要

极硬极高磨损岩石将增大 TBM 刀具磨损、 降低掘进速率, 给施工带来极大挑战. 为了应对该类地层, 设备制造商和研究人员通过提高 TBM 性能和开发辅助岩石破碎方法, 进行了大量探索. 本文首先通过案例分析, 概述了极硬岩中 TBM 施工的诸项挑战; 其次, 综述了硬岩 TBM 的技术突破和各种可以用于独立/辅助破碎硬岩的方法; 而后, 详细阐述了高压水射流、 激光和微波辅助破岩的机理、 实验室研究、 现场应用以及未来需要开展的研究方向. 整体而言, 这些辅助破岩方法在技术上是可行的, 然而其独立破岩比能通常是机械破岩比能的 10 倍以上, 因此需要研究辅助方法-机械联合破碎极硬岩的比能, 另外需开发脉冲型水射流、 激光和微波技术, 使其应用更有经济性.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BÄPPLER K. New developments in TBM tunnelling for changing grounds [J]. Tunnelling and Underground Space Technology, 2016, 57: 18–26. DOI: https://doi.org/10.1016/j.tust.2016.01.014.

    Article  Google Scholar 

  2. HOME L. Hard rock TBM tunneling in challenging ground: Developments and lessons learned from the field [J]. Tunnelling and Underground Space Technology, 2016, 57: 27–32. DOI: https://doi.org/10.1016/j.tust.2016.01.008.

    Article  Google Scholar 

  3. MAIDL B, SCHMID L, RITZ W, HERRENKNECHT M. Hardrock tunnel boring machines [M]. New York: Wiley, 2008.

    Book  Google Scholar 

  4. LIU Quan-sheng, HUANG Xing, GONG Qiu-ming, DU Li-jie, PAN Yu-cong, LIU Jian-ping. Application and development of hard rock TBM and its prospect in China [J]. Tunnelling and Underground Space Technology, 2016, 57: 33–46. DOI: https://doi.org/10.1016/j.tust.2016.01.034.

    Article  Google Scholar 

  5. BILGIN N, COPUR H, BALCI C. Mechanical excavation in mining and civil industries [M]. Florida, USA: Taylor & Francis, 2013.

    Book  Google Scholar 

  6. HOME L, ASKILSRUD O G. Tunnel boring machines in mining [M]// DARLING P. SME Mining Engineering Handbook. Third Edition. USA: SME, 2011.

    Google Scholar 

  7. ZHENG Y L, ZHANG Q B, ZHAO J. Challenges and opportunities of using tunnel boring machines in mining [J]. Tunnelling and Underground Space Technology, 2016, 57: 287–299. DOI: https://doi.org/10.1016/j.tust.2016.01.023.

    Article  Google Scholar 

  8. BROX D. Technical considerations for the application of TBMs for mining projects [J]. Transactions of the Society for Mining, Metallurgy, and Exploration, 2013, 334: 498–505.

    Google Scholar 

  9. CIGLA M, YAGIZ S, OZDEMIR L. Application of tunnel boring machines in underground mine development [C]// International Mining Congress. Ankara, Turkey, 2001: 155–164.

  10. GERTSCH R E. Mechanical mining: Challenges and directions [J]. Mining Engineering, 1994, 46: 1250–1253.

    Google Scholar 

  11. ROBBINS R J. Machine tunneling in the twenty-first century [J]. Tunneling and Underground Space Technology, 1987, 2(2): 147–154. DOI: https://doi.org/10.1016/0886-7798(87)90009-5.

    Article  Google Scholar 

  12. BARLA G, PELIZZA S. TBM tunneling in difficult ground conditions [C]// GeoEng2000—An International Conference on Geotechnical & Geological Engineering. Melbourne, Australia: Technomic Publishing Co., 2000: 1–20.

    Google Scholar 

  13. GONG Qiu-ming, YIN Li-jun, MA Hong-su, ZHAO Jian. TBM tunnelling under adverse geological conditions: An overview [J]. Tunnelling and Underground Space Technology, 2016, 57: 4–17. DOI: https://doi.org/10.1016/j.tust.2016.04.002.

    Article  Google Scholar 

  14. HANSEN A M. The history of TBM tunneling in Norway [R]. Trondheim: Norwegian Soil and Rock Engineering Association Publication, 1998: 11–19.

    Google Scholar 

  15. VANIN D. The application of a tunnel-boring machine for exploration drifting at Kiena Gold Mines Limited, Val d’Or, Quebec [J]. CIM Bulletin, 1987, 80: 41–47.

    Google Scholar 

  16. IFRIM D, ZOLDY D. Tunnel boring machines, history and trends in Canada [C]// Vanouver TAC 2014: Tunneling in a Resource Driven World. Vancouver, Canada, 2014.

  17. LIU P, LIANG W H. Design considerations for construction of the Qinling Tunnel using TBM [J]. Tunnelling and Underground Space Technology, 2000, 15(2): 139–146. DOI: https://doi.org/10.1016/S0886-7798(00)00041-9.

    Article  Google Scholar 

  18. BILGIN N, COPUR H, BALCI C. Effect of high strength rocks on TBM performance [C]// TBM Excavation in Difficult Ground Conditions. Wilhelm Ernst & Sohn, 2016: 211–223.

  19. ROBBINS. Alimineti Madhava Reddy (AMR) [OL/OB]. The Robbins Company, 2017. http://www.therobbinscompany.com/projects/alimineti-madhava-reddy-amr.

  20. ROBBINS. Caving hard rock with a small diameter double shield [OL/OB]. The Robbins Company, 2014. http://www.therobbinscompany.com/wp-content/uploads/2014/09/Robbins_Newsletter_Summer_2014.pdf.

  21. LOG S, BROX D, ANDERSON T, JOHANNSEN E. The return of TBMs to Norway at Røssåga HEPP — TBM operation through extremely hard rock, unstable rock mass and other challenges [C]// World Tunnel Congress. Bergen, Norway, 2017: 1–7.

  22. XUE Y D, DIAO Z X, ZHAO F. Analysis of TBM performance and disc cutter consumption in Yinhanjiwei water conveyance tunnel project [C]// World Tunnel Congress 2016. San Francisco, USA, 2016: 1–13.

  23. ROBBINS. Bahce-Nurdag high speed rail tunnels [OL/OB]. The Robbins Company, 2017. http://www.therobbinscompany.com/projects/bahce-nurdag.

  24. ISRM. Rock characterization, testing and monitoring: ISRM suggested methods [M]. Oxfoxd: Pergamon Press, 1981.

    Google Scholar 

  25. WICKHAM G E, TIEDEMANN H R, SKINNER E H. Support determination based on geologic predictions [C]// North America Rapid Excavation and Tunneling Conference. Chicago, Illinois, USA: American Institute of Mining, Metallurgical, and Petroleum Engineers, 1972: 43–64.

    Google Scholar 

  26. WEST G. Rock abrasiveness testing for tunneling [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1989, 26(2): 151–160. DOI: https://doi.org/10.1016/0148-9062(89)90003-X.

    Article  Google Scholar 

  27. GONG Feng-qiang, SI Xue-feng, LI Xi-bing, WANG Shan-yong. Experimental investigation of strain rockburst in circular Caverns under deep three-dimensional high-stress conditions [J]. Rock Mechanics and Rock Engineering, 2019, 52(5): 1459–1474. DOI: https://doi.org/10.1007/s00603-018-1660-5.

    Article  Google Scholar 

  28. GONG Feng-qiang, LUO Yong, LI Xi-bing, SI Xue-feng, TAO Ming. Experimental simulation investigation on rockburst induced by spalling failure in deep circular tunnels [J]. Tunnelling and Underground Space Technology, 2018, 81: 413–427. DOI: https://doi.org/10.1016/j.tust.2018.07.035.

    Article  Google Scholar 

  29. LI Xi-bing, GONG Feng-qiang, TAO Ming, DONG Long-jun, DU Kun, MA Chu, ZHOU Zi-long, YIN Tu-bing. Failure mechanism and coupled static-dynamic loading theory in deep hard rock mining: A review [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(4): 767–782. DOI: https://doi.org/10.1016/j.jrmge.2017.04.004.

    Article  Google Scholar 

  30. KAISER P K, MACCREATH D R, TANNANT D D. Canadian rockburst support handbook: Prepared for sponsors of the Canadian rockburst research program 1990–1995 [R]. Geomechanics Research Centre, 1996.

  31. ORTLEPP W D, STACEY T R. Rockburst mechanisms in tunnels and shafts [J]. Tunnelling and Underground Space Technology, 1994, 9(1): 59–65. DOI: https://doi.org/10.1016/0886-7798(94)90010-8.

    Article  Google Scholar 

  32. GONG Q M, YIN L J, WU S Y, ZHAO J, TING Y. Rock burst and slabbing failure and its influence on TBM excavation at headrace tunnels in Jinping II hydropower station [J]. Engineering Geology, 2012, 124: 98–108. DOI: https://doi.org/10.1016/j.enggeo.2011.10.007.

    Article  Google Scholar 

  33. FRENZEL C, KÄSLING H, THURO K. Factors influencing disc cutter wear [J]. Geomechanik Und Tunnelbau, 2008, 1(1): 55–60. DOI: https://doi.org/10.1002/geot.200800006.

    Article  Google Scholar 

  34. DU Li-jie. Progresses, challenges and countermeasures for TBM construction technology in China [J]. Tunnel Construction, 2017, 37(9): 1063–1075. DOI: https://doi.org/10.3973/j.issn.1672-741X.2017.09.002. (in Chinese)

    Google Scholar 

  35. LI D, YAN Q. TBM construction in Qinling Tunnel on Xikang Railway Line [J]. Tunnel and Underground World, 1999(1): 31–35. DOI: https://doi.org/10.13807/j.cnki.mtt.1999.01.007. (in Chinese)

  36. PLINNINGER R, KÄSLING H, THURO K, SPAUN G. Testing conditions and geomechanical properties influencing the CERCHAR abrasiveness index (CAI) value [J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(2): 259–263. DOI: https://doi.org/10.1016/S1365-1609(02)00140-5.

    Article  Google Scholar 

  37. DEERING K, DOLLINGER G L, KRAUTER D, ROBY J A. Development and performance of large diameter cutters for use on high performance TBM’s [C]// Rapid Excavations and Tunneling Conference. Seattle, USA: Society for Mining, Metallurgy and Exploration, 1991: 807–814.

    Google Scholar 

  38. ROBY J, SANDELL T, KOCAB J, LINDBERGH L. The current state of disc cutter design and development direction [C]// ROACH M F, KRITZER M R, OFIARA D, TOWNSEND B F. North American Tunneling 2008. San Francisco, USA: SME, 2008: 36–45.

    Google Scholar 

  39. SMADING S. Large-diameter 20-inch disc cutters: A comparison of tool life and performance on hard rock TBMs [C]// RETC 2017. San Diego, USA, 2017: 254–260.

  40. OZDEMIR L. The cutting edge [J]. World Tunneling, 2002: 86–88.

  41. SMADING S. TBM disc cutters in the field: Extreme tunnel conditions inform the latest cutting tool advancements[C]// The Thired International Conference on Tunnel Boring Machines in Difficult Grounds. Wuhan, China, 2017.

  42. THOMAS T. The tough got tougher [J]. Tunneling Journal, 2017/2018: 14–15.

  43. SMADING S. 3 ways to bore more efficiently in extremely hard rock: Maximize your TBM advance through minimized downtime, 2019. [OL/OB]. https://www.therobbinscompany.com/3-ways-to-bore-hard-rock.

  44. MOSAVAT K. A smart disc cutter monitoring system using cutter instrumentation technology [C]// RETC 2017. San Diego, USA, 2017: 109–118.

  45. ROSTAMI J, OZDEMIR L. A new model for performance prediction of hard rock TBM [C]// BOWERMAN L D. Rapid Excavation and Tunneling Conference 1993. Boston, MA: SME, 1993: 793–809.

    Google Scholar 

  46. BILGIN N, COPUR H, BALCI C, TUMAC D. TBM performance prediction using laboratory cutting tests in very hard and abrasive rock formations [C]// The Third International Conference on Tunnel Boring Machines in Difficult Grounds. Wuhan, China, 2017.

  47. NELSON P P. TBM performance analysis with reference to rock properties [M]// Excavation, Support and Monitoring. Amsterdam: Elsevier, 1993: 261–291.

    Chapter  Google Scholar 

  48. MAURER W C. Novel drilling techniques [M]. Britain: Pergamon Press, 1968.

    Google Scholar 

  49. MURRAY C, COURTLEY S, HOWLETT P F. Developments in rock-breaking techniques [J]. Tunnelling and Underground Space Technology, 1994, 9(2): 225–231 DOI: https://doi.org/10.1016/0886-7798(94)90034-5.

    Article  Google Scholar 

  50. NRC. Microwave processing of materials [M]. Washington, DC: The National Academies Press, 1994.

    Google Scholar 

  51. PIERCE K G, LIVESAY B J, FINGER J T. Advanced drilling systems study [R]. Sandia National Laboratories, 1996: 163.

  52. RES J, WLADZIELCZYK K, GHOSE A K. Environment-friendly techniques of rock breaking [R]. Taylor & Francis, 2003.

  53. VOGT D. A review of rock cutting for underground mining: past, present, and future [J]. Journal of the Southern African Institute of Mining and Metallurgy, 2016, 116(11): 1011–1026. DOI: https://doi.org/10.17159/2411-9717/2016/v116n11a3.

    Article  Google Scholar 

  54. MAURER W C. Advanced drilling techniques [M]. Tulsa, Oklahoma, USA: Petroleum Pub. Co., 1980.

    Google Scholar 

  55. CARSTENS J P, DAVISON W R, BROWN C A, MCGARRY F J, SMITH A R. Heat-assisted tunnel boring machines [R]. United Aircraft Corporation Research Laboratories, 1970: 335.

  56. RAMEZANZADEH A, HOOD M. A state-of-the-art review of mechanical rock excavation technologies [J]. Journal of Mining and Environment, 2010, 1: 29–39. DOI: https://doi.org/10.22044/jme.2010.4.

    Google Scholar 

  57. DEHKHODA S, FAIRHURST C. Rapid excavation and tunneling techniques [J]. Hydraulic Fracturing Journal, 2017, 4: 101–108.

    Google Scholar 

  58. ROSTAMI J. Mechanical rock breaking [M]// DARLING P. SME Mining Engineering Handbook. USA: SME, 2011: 417–434.

    Google Scholar 

  59. von HIPPEL A. Dielectrics and waves [M]. New York: John Wiley & Sons, Inc, 1954.

    Google Scholar 

  60. CHABAY R W, SHERWOOD B A. Matter and interactions [J]. Matter and Interactions, 2011, 544: 594–596.

    Google Scholar 

  61. HAMELIN M, KITZINGER F, PRONKO S, SCHOFIELD G. Hard rock fragmentation with pulsed power [C]// Ninth IEEE International Pulsed Power Conference. Albuquerque, NM, USA, 1993: 11–14.

  62. SEGSWORTH R S, KUHN K. Electrical rock breaking [J]. IEEE Transactions on Industry Applications, 1977, IA–13(1): 53–57. DOI: https://doi.org/10.1109/TIA.1977.4503362.

    Article  Google Scholar 

  63. SUMMERS D A. Waterjetting Technology [M]. CRC Press, 1995.

  64. BOWDEN F P, FIELD J E. The brittle fracture of solids by liquid impact, by solid impact, and by shock [J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1964, 282(1390): 331–352. DOI: https://doi.org/10.1098/rspa.1964.0236.

    Google Scholar 

  65. FIELD J E. ELSI conference: invited lecture: Liquid impact: theory, experiment, applications [J]. Wear, 1999, 233–235: 1–12. DOI: https://doi.org/10.1016/S0043-1648(99)00189-1.

    Article  Google Scholar 

  66. LESSER M. Analytic solution of liquid-drop impact problems [J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1981, 377(1770): 289–308. DOI: https://doi.org/10.1098/rspa.1981.0125.

    MathSciNet  Google Scholar 

  67. MOHAMED M A K. Waterjet cutting up to 900 MPa [M]. Hannover: The University of Hannover, 2004.

    Google Scholar 

  68. SUMMERS D A, HENRY R L. Water jet cutting of sedimentary rock [J]. Journal of Petroleum Technology, 1972, 24(7): 797–802. DOI: https://doi.org/10.2118/3533-PA.

    Article  Google Scholar 

  69. HOOD M. The use of water jets for rock excavation [C]// HUDSON J A. Comprehensive Rock Engineering: Principles, Practice and Projects, 1993: 229–260.

  70. KNICKMEYER W, BAUMANN L. High-pressure water jet-assisted tunneling techniques [C]// Second US Water Jet Conference. Rolla, Missouri, USA, 1983: 346–356.

  71. HOOD M, KNIGHT G C, THIMONS E D. A review of jet assisted rock cutting [J]. Journal of Engineering for Industry, 1992, 114: 196–206. DOI: https://doi.org/10.1115/1.2899772.

    Article  Google Scholar 

  72. FENN O, PROTHEROE B, JOUGHIN N C. Enhancement of roller cutting by means of water jets [C]// MANN C D, KELLEY M N. Rapid Excavation and Tunneling Conference. New York, USA: AIME, 198: 341–356.

  73. DUBUNGNON O. An experimental study of water jet assisted drag bit cutting of rocks [C]// First US Water Jet Conference. Golden, Colorado, USA, 1981.

  74. HOOD M. Waterjet-assisted rock cutting systems-the present state of the art [J]. International Journal of Mining Engineering, 1985, 3(2): 91–111. DOI: https://doi.org/10.1007/BF00881623.

    Article  Google Scholar 

  75. CICCU R, GROSSO B. Improvement of the excavation performance of PCD drag tools by water jet assistance [J]. Rock Mechanics and Rock Engineering, 2010, 43(4): 465–474. DOI: https://doi.org/10.1007/s00603-009-0068-7.

    Article  Google Scholar 

  76. WANG F D, MILLER R. High pressure water jet assisted tunneling [C]// Rapid Excavation and Tunneling Conference. Las Vegas, USA, 1976: 649–676.

  77. HENNEKE J, BAUMANN L. Jet assisted tunnel boring in coal measure strata [C]// 4th International Symposium on Jet Cutting Technology. Cantebury, UK, 1978: J1–12.

  78. OZDEMIR L, EVANS R J. Development of waterjet assisted drag bit cutting head for coal measure rock [C]// SUTCLIFFE H, WILSON J W. Rapid Excavation and Tunneling Conference. Chicago, Illinois, 1983: 701–718.

  79. KOUZMICH I A, MERZLYAKOV V G. Schemes of coal massif breakage by disc cutter and high-velocity water jet [C]// Second US Water Jet Conference. Rolla, Missouri, USA, 1983: 381–400.

  80. TECEN O, FOWELL R J. Hybrid rock cutting: Fundamental investigations and practical applications [C]// SUMMERS D A, HASTON F F. 2nd US Waterjet Conference. Rolla, Missouri, USA, 1983: 347–457.

  81. ROPCHAN D, WANG F D, WOLGAMOTT J. Application of water jet assisted drag bit and pick cutter for the cutting of coal measure rocks [R]. Office of Scientific and Technical Information (OSTI), 1980.

  82. CICCU R, GROSSO B. Improvement of disc cutter performance by water jet assistance [J]. Rock Mechanics and Rock Engineering, 2014, 47(2): 733–744. DOI: https://doi.org/10.1007/s00603-013-0433-4.

    Article  Google Scholar 

  83. CHADWICK R F, KURKO M C. Continuous high-velocity jet excavation–Phase I [R]. Bendix Research Lab, 1972: 97.

  84. CHADWICK R F. Continuous high-velocity jet excavation — Phase II [R]. Bendix Research Lab, 1973: 33.

  85. DEHKHODA S. Experimental and numerical study of rock breakage by pulsed water jets [D]. Brisbane: University of Queensland, 2011.

    Google Scholar 

  86. BAUMANN L, HENNEKE J. Attempt of technical-economical optimization of high pressure jet assistance for tunneling machines [C]// Fifth International Symposium on Jet Cutting Technology. Hanover, Germany, 1980: 119–140.

  87. TBMSTAFF. Water jet hard rock TBM launch ceremony held at CREG [OL/OB]. Tunnel Business Magazine, 2019. https://tunnelingonline.com/water-jet-hard-rock-tbm-launch-ceremony-creg/layout-of-high-pressure-water-nozzle.

  88. HUSTRULID W. A technical and economic evaluation of water jet assisted tunnel boring [R]. Salt Lake City, Utah, USA: University of Utah, 1976: 152.

    Google Scholar 

  89. OZDEMIR L, DOLLINGER G L. Recent developments in mechanical and water jet assisted tunnel boring technology for civil and mining engineering applications [C]// ISRM Symposium: Design and Performance of Underground Excavations. Cambridge, UK, 1984: 295–303. DOI: https://doi.org/10.1680/dapoue.35652.0035.

  90. REHBINDER G. A theory about cutting rock with a water jet [J]. Rock Mechanics, 1980, 12: 247–257. DOI: https://doi.org/10.1007/bf01251028.

    Article  Google Scholar 

  91. WILSON J W, SUMMERS D A, GERTSCH R E. The development of waterjets for rock excavation [C]// 4th International Symposium on Mine Mechanisation and Automation. Brisbane, Australia, 199: 1–10.

  92. SIEGMAN A E. Lasers [M]. Philadelphia, USA: University Science Books, 1986.

    Google Scholar 

  93. WEBER M J. Handbook of laser wavelengths [M]. CRC Press, 1998.

  94. WILLIAMSON R B, F. M, MCGARRY F J. Some relationships between power level, exposure time, sample size and weakening in laser-assisted rock fracture [M]. MIT Department of Civil Engineering, 1968.

  95. JUREWICZ B R. Rock excavation with laser assistance [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1976, 13(7): 207–219. DOI: https://doi.org/10.1016/0148-9062(76)91695-8.

    Article  Google Scholar 

  96. GRAVES R M, ARAYA A, GAHAN B C, PARKER R A. Comparison of specific energy between drilling with high power sasers and other drilling methods [C]// SPE Annual Techinical Conference. San Antonio, Texas, US: Society of Petroleum Engineers, 2002: 1–7. DOI: https://doi.org/10.2118/77627-MS.

    Google Scholar 

  97. MCGARRY F J, MOAVENZADEH F. Laser heating effects on rock samples [C]// The 12th US Symposium on Rock Mechanics (USRMS). Rolla, Missouri, USA: American Rock Mechanics Association, 1970.

    Google Scholar 

  98. GRAVES R M, BAILO E T. Analysis of thermally altered rock properties using high-power laser technology [C]// Canadian International Petroleum Conference. Calgary, Alberta, Canada: Petroleum Society of Canada, 2005: 1–8. DOI: https://doi.org/10.2118/2005-245.

    Google Scholar 

  99. XU Z, REED C B, KONERCKI G, PARKER R A, GAHAN B C, BATARSEH S, GRAVES R M, FIGUEROA H, SKINNER N. Specific energy for pulsed laser rock drilling [J]. Journal of Laser Applications, 2003, 15(1): 25–30. DOI: https://doi.org/10.2351/1.1536641.

    Article  Google Scholar 

  100. PARKER R, XU Z, REED C, GRAVES R, GAHAN B, BATARSEH S. Drilling large diameter holes in rocks using multiple laser beams [C]// ICALEO. 2003: 504. DOI: https://doi.org/10.2351/1.5060059.

  101. MOAVENZADEH F, MCGARRY F J, WILLIAMSON R B. Use of laser and surface active agents for excavation in hard rocks [C]// Fall Meeting of the Society of Petroleum Engineers of AIME. Houston, Texas: Society of Petroleum Engineers, 1968: 1–16. DOI: https://doi.org/10.2118/2240-MS.

    Google Scholar 

  102. RAD P F, MCGARRY F J. Thermally assisted cutting of granite [C]// The 12th US Symposium on Rock Mechanics (USRMS). Rolla, Missouri, USA: American Rock Mechanics Association, 1970: 721–757.

    Google Scholar 

  103. CARSTENS J P, BROWN C O. Rock cutting by laser [C]// Fall Meeting of the Society of Petroleum Engineers of AIME. New Orleans, Louisiana, USA: Society of Petroleum Engineers, 1971: 1–10. DOI: https://doi.org/10.2118/3529-MS.

    Google Scholar 

  104. LAURIELLO P J, CHEN Y. Thermal fracturing of hard rock [J]. Journal of Applied Mechanics, 1973, 40(4): 909–914. DOI: https://doi.org/10.1115/1.3423186.

    Article  Google Scholar 

  105. O’BRIEN D G, GRAVES R M, O’BRIEN E A. Laser-rock-fluid interaction: Application of free-electron laser (FEL) in petroleum well drilling and completions [C]// Optoelectronics’ 99-Integrated Optoelectronic Devices. San Jose, CA, United States: SPIE, 1999: 168–176.

    Google Scholar 

  106. GRAVES R M, BAILO E T. Porosity and permeability changes in lased rocks calculated using fractal fragmentation theory [C]// Canadian International Petroleum Conference. Calgary, Alberta, Canada: Petroleum Society of Canada, 2004: 1–8. DOI: https://doi.org/10.2118/2004-112.

    Google Scholar 

  107. GURVICH L, YATSIV S, SHACHRAI A. Rock processing with CO2 laser radiation [C]// Proc SPIE. 1972: 297–305.

  108. KUMAR M, BISWAS A K, SRINIVAS K, NATH A K. Marble cutting with cw CO2 laser [C]// Photonics West’ 95. Proc SPIE 2374, Novel Applications of Lasers and Pulsed Power. San Jose, CA, USA, 1995, 2374: 34–39. DOI: https://doi.org/10.1117/12.205021.

    Google Scholar 

  109. MIRANDA R M, QUINTINO L. CO2 Laser cutting of calcareous stones [J]. Materials and Manufacturing Processes, 2004, 19(6): 1133–1142. DOI: https://doi.org/10.1081/AMP-200035267.

    Article  Google Scholar 

  110. RIVEIRO A, MEJÍAS A, SOTO R, QUINTERO F, DEL VAL J, BOUTINGUIZA M, LUSQUIÑOS F, PARDO J, POU J. CO2 laser cutting of natural granite [J]. Optics & Laser Technology, 2016, 76: 19–28. DOI: https://doi.org/10.1016/j.optlastec.2015.07.018.

    Article  Google Scholar 

  111. MONTROSS C S, FLOREA V, BOLGER J A. Laser-induced shock wave generation and shock wave enhancement in basalt [J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(6): 849–855. DOI: https://doi.org/10.1016/S0148-9062(99)00054-6.

    Article  Google Scholar 

  112. BOLGER J A, MONTROSS C S, RODE A V. Shock waves in basalt rock generated with high-powered lasers in a confined geometry [J]. Journal of Applied Physics, 1999, 86(10): 5461–5466. DOI: https://doi.org/10.1063/1.371546.

    Article  Google Scholar 

  113. SELLAR J G. Apparatus and process for employing synergistic destructive powers of a water stream and a laser beam: Google Patents, US5356081A [P]. 2014-08-21.

  114. LAND M S, VOLKMAR J F, ZEDIKER M S, KOLACHALAM S, NORTON R J, FAIRCLOTH B O, GRUBB D L, de WITT R A. High power laser tunneling mining and construction equipment and methods of use [M]. US: Foro Energy Inc., Littleton, CO (US), 2014: 74.

    Google Scholar 

  115. POONIWALA S A. Lasers: The next bit [C]// SPE Eastern Regional Meeting. Canton, Ohio, USA: Society of Petroleum Engineers, 2006: 1–10. DOI: https://doi.org/10.2118/104223-MS.

    Google Scholar 

  116. METAXAS A C, MEREDITH R J. Industrial microwave heating [M]. Stevenage, England: IET, 1983.

    Google Scholar 

  117. ZHENG Yan-long, MA Zhong-jun, ZHAO Xiao-bao, HE Lei. Experimental investigation on the thermal, mechanical and cracking behaviours of three igneous rocks under microwave treatment [J]. Rock Mechanics and Rock Engineering, 2020, 53(8): 3657–3671. DOI: https://doi.org/10.1007/s00603-020-02135-x.

    Article  Google Scholar 

  118. SANTAMARINA J C. Rock excavation with microwaves: A literature review [C]// KULHAWY F H. Foundation Engineering Conference. Evanston, Illinois, United States: ASCE, 1989: 459–473.

    Google Scholar 

  119. BATCHELOR A R, JONES D A, PLINT S, KINGMAN S W. Deriving the ideal ore texture for microwave treatment of metalliferous ores [J]. Minerals Engineering, 2015, 84: 116–129. DOI: https://doi.org/10.1016/j.mineng.2015.10.007.

    Article  Google Scholar 

  120. NELSON S, LINDROTH D, BLAKE R. Dielectric properties of selected and purified minerals At1 to 22 GHz [J]. Journal of Microwave Power and Electromagnetic Energy, 1989, 24(4): 213–220. DOI: https://doi.org/10.1080/08327823.1989.11688096.

    Article  Google Scholar 

  121. CHURCH R H, WEBB W E, SALSMAN J B. Dielectric properties of low-loss minerals [R]. United-States Department of the Interior and The Bureau of Mines, 1988: 28.

  122. WALKIEWICZ J W, KAZONICH G, MCGILL S L. Microwave heating characteristics of selected minerals and compounds [J]. Miner Metall Process, 1988, 5(1): 39–42. DOI: https://doi.org/10.1007/BF03449501.

    Google Scholar 

  123. HARRISON P C. A fundamental study of the heating effect of 2.45 GHz microwave radiation on minerals [D]: University of Birmingham, 1997.

  124. HOEKSTRA P. Rock, frozen soil and ice breakage by high-frequency electromagnetic radiation: A review [R]. Department of Defense, Department of the Army, Corps of Engineers, Cold Regions Research and Engineering Laboratory, 1976: 17.

  125. MISNIK Y M, NEKRASOV L B. Breaking frozen loose rocks by means of a combination of high-frequency and mechanical fields [J]. Soviet Mining, 1969, 5(6): 646–650. DOI: https://doi.org/10.1007/bf02501244.

    Article  Google Scholar 

  126. MISNIK Y M, NEKRASOV L B. Electrothermal breaking of frozen rocks (Principal problems and research results) [J]. Soviet Mining, 1973, 9(5): 487–491. DOI: https://doi.org/10.1007/BF02501375.

    Article  Google Scholar 

  127. GUSHCHIN V V, RZHEVSKII V V, KUZNETSOV V V, PROTASOV Y I, YURCHENKO N N. Driving of workings by a cutter-loader with electrothermal rock breaking [J]. Soviet Mining, 1973, 9(6): 618–622. DOI: https://doi.org/10.1007/BF02501780.

    Article  Google Scholar 

  128. GUSHCHIN V V, KUZNETSOV V V, CHERNIKOV V A, MERZON A G, PROTASOV Y I, VARTANOV G A. Driving horizontal workings by means of an entry drifting machine with electrothermomechanical cutting [J]. Soviet Mining, 1979, 15(2): 133–137. DOI: https://doi.org/10.1007/BF02499511.

    Article  Google Scholar 

  129. PROTASOV Y I, KUZNETSOV V V, MERZON A G, CHERNIKOV V A, RETINSKII V S. A study of electrothermomechanical destruction of hard rocks with a rotary heading machine [J]. Soviet Mining, 1984, 20(6): 462–467. DOI: https://doi.org/10.1007/BF02498201.

    Article  Google Scholar 

  130. KRASNOVSKIJ S S, UVAROV A P. Examination of possibility of lowering of power consumption of rocks fracture at affecting of thick streams of microwave energy of millimeter wave [C]// Russian Scientific Conference: Microwave Energy Application in Processes and Scientific Examinations. Saratov, Russia, 1991: 139–140.

  131. KOIWA T, SHIRATORI Y, TAKAHASHI H, MATSUMOTO S. Rock breaking by microwave radiation-effects of local heating and thermal fracture [R]. Nagase, Yokosuka, Japan: Ministry of Transport, 1975: 181–209.

    Google Scholar 

  132. TAKAHASHI H, KOIWA T, MIYAZAKI S, KIHARA S, MATSUMOTO S. Rock excavation by microwave-Capability of high power microwave rock breaker (100 kW, 200 kW) for rock excavation [R]. Port and Airport Research Institute, 1979: 1–17.

  133. LINDROTH D P, BERGLUND W R, MORRELL R J, BLAIR J R. Microwave-assisted drilling in hard rock [J]. Minining Engineering, 1993, 25: 1159–1163.

    Google Scholar 

  134. HARTLIEB P, GRAFE B. Experimental study on microwave assisted hard rock cutting of granite [J]. BHM Berg- und Hüttenmännische Monatshefte, 2017, 162(2): 77–81. DOI: https://doi.org/10.1007/s00501-016-0569-0.

    Article  Google Scholar 

  135. HARTLIEB P, GRAFE B, SHEPEL T, MALOVYK A, AKBARI B. Experimental study on artificially induced crack patterns and their consequences on mechanical excavation processes [J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 100: 160–169. DOI: https://doi.org/10.1016/j.ijrmms.2017.10.024.

    Article  Google Scholar 

  136. LU Gao-ming, FENG Xia-ting, LI Yuan-hui, ZHANG Xi-wei. The microwave-induced fracturing of hard rock [J]. Rock Mechanics and Rock Engineering, 2019, 52(9): 3017–3032. DOI: https://doi.org/10.1007/s00603-019-01790-z.

    Article  Google Scholar 

  137. ZNAMENÁCKOVÁ I, LOVÁS M, HÁJEK M, JAKABSKÝ Š. Melting of andesite in a microwave oven [J]. Journal of Mining and Metallurgy, 2003, 39(3, 4): 549–557. DOI: https://doi.org/10.2298/JMMB0304549Z.

    Article  Google Scholar 

  138. SATISH H. Exploring microwave assisted rock breakage for possible space mining applications [D]. Montreal, Quebec, Canada: McGill University, 2005.

    Google Scholar 

  139. SIKONG L, BUNSIN T. Mechanical property and cutting rate of microwave treated granite rock [J]. Songklanakarin Journal of Science and Technology, 2009, 31: 447–452.

    Google Scholar 

  140. PEINSITT T, KUCHAR F, HARTLIEB P, MOSER P, KARGL H, RESTNER U, SIFFERLINGER N A. Microwave heating of dry and water saturated basalt, granite and sandstone [J]. International Journal of Mining and Mineral Engineering, 2010, 2(1): 18–29. DOI: https://doi.org/10.1504/IJMME.2010.03181.

    Article  Google Scholar 

  141. NEJATI H. Analysis of physical properties and thermo-mechanical induced fractures of rocks subjected to microwave radiation [D]. Montreal, Quebec, Canada: McGill, 2014.

    Google Scholar 

  142. NEKOOVAGHT P M. Physical and mechanical properties of rocks exposed to microwave irradiation: Potential application to tunnel boring [D]. Montreal, Quebec, Canada: McGill University, 2015.

    Google Scholar 

  143. JERBY E, DIKHTYAR V, AKTUSHEV O, GROSGLICK U. The microwave drill [J]. Science, 2002, 298: 587–589.

    Article  Google Scholar 

  144. JERBY E, NEROVNY Y, MEIR Y, KORIN O, PELEG R, SHAMIR Y. A silent microwave drill for deep holes in concrete [J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(1): 522–529. DOI: https://doi.org/10.1109/TMTT.2017.2729509.

    Article  Google Scholar 

  145. OGLESBY K, WOSKOV P, EINSTEIN H, LIVESAY B. Deep geothermal drilling using millimeter wave technology (final technical research report) [R]. Office of Scientific and Technical Information (OSTI), 2014.

  146. WOSKOV P. Millimeter-wave directed energy deep boreholes [C]// Drilling for Geology II Conference 2017. Brisbane, Australia: Australian Institute of Geoscientists, 2017.

    Google Scholar 

  147. ZHENG Y L, ZHANG Q B, ZHAO J. Effect of microwave treatment on thermal and ultrasonic properties of gabbro [J]. Applied Thermal Engineering, 2017, 127: 359–369. DOI: https://doi.org/10.1016/j.applthermaleng.2017.08.060.

    Article  Google Scholar 

  148. WOSKOV P P, EINSTEIN H H, OGLESBY K D. Penetrating rock with intense millimeter-waves [C]// 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). Tucson, Arizona, USA: IEEE, 2014: 1–2. https://doi.org/10.1109/IRMMW-THz.2014.6955993.

    Google Scholar 

  149. HASSANI F, NEKOOVAGHT P M, GHARIB N. The influence of microwave irradiation on rocks for microwave-assisted underground excavation [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8: 1–15. DOI: https://doi.org/10.1016/j.jrmge.2015.10.004.

    Article  Google Scholar 

  150. PEINSITT T, KUCHAR F, KARGL H, RESTNER U, SIFFERLINGER N, MOSER P. Microwave heating of rocks with different water content [C]//Proceedings of Microwave Technology’ 08. 2008: 1–9.

  151. NEKOOVAGHT P M. An investigation on the influence of microwave energy on basic mechanical properties of hard rocks [D]. Montreal, Quebec, Canada: Concordia University, 2009.

    Google Scholar 

  152. COOK N G W, JOUGHIN N C. Rock fragmentation by mechanical, chemical and thermal methods [C]// The 6th International Mining Conference. Madrid, Spain, 1979: 223–228.

  153. BIENIAWSKI R Z T, CELADA B, TARDAGUILA I, RODRIGUES A. Specific energy of excavation in detecting tunneling conditions ahead of TBMs [J]. Tunnels & Tunneling International, 2012: 65–68.

  154. MELLOR M. Normalization of specific energy values [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1972, 9: 661–663. DOI: https://doi.org/10.1016/0148-9062(72)90016-2.

    Article  Google Scholar 

  155. POOLE J W, THORPE M L. Study of high powered plasma for in situ hard rock disintegration [R]. Defense Technical Information Center, 1973.

Download references

Acknowledgement

This work was financially supported by the Fundamental Research Funds for the Chinese Central Universities (Grant Nos. 3205009419 and 3205002001C3) and the Innovative and Entrepreneurial Doctor of Jiangsu Province, China. The authors also would like to express their gratitude to the handling editors and the three anonymous reviewers for their critical comments.

Author information

Authors and Affiliations

Authors

Contributions

ZHENG Yan-long provided the concept and edited the draft of manuscript. HE Lei edited the draft of manuscript. All authors replied to review comments and revised the final version.

Corresponding author

Correspondence to Lei He  (何磊).

Ethics declarations

The authors declare no conflict of interests.

Additional information

Foundation item: Projects(3205009419, 3205002001C3) supported by Fundamental Research Funds for Central Universities, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Yl., He, L. TBM tunneling in extremely hard and abrasive rocks: Problems, solutions and assisting methods. J. Cent. South Univ. 28, 454–480 (2021). https://doi.org/10.1007/s11771-021-4615-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4615-z

Key words

关键词

Navigation