Skip to main content
Log in

Dietary Selenized Glucose Increases Selenium Concentration and Antioxidant Capacity of the Liver, Oviduct, and Spleen in Laying Hens

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Selenized glucose (SeGlu) is a new type of organic selenium (Se) that is synthesized through the selenide reaction of glucose with sodium hydrogen selenide. This study aimed to clarify the influence of dietary SeGlu on the Se level and antioxidant capacity of the liver, oviduct, and spleen in laying hens. A total of 360, 60-week-old, Hy-Line Brown laying hens were randomly assigned to three treatment groups: a basal diet alone (control group, without adding exogenous Se) or the basal diet supplemented with 0.3 mg/kg of Se from sodium selenite (SS) or 5 mg/kg of Se from SeGlu. Diets with SeGlu increased Se levels in the liver, oviduct, and spleen of laying hens (P < 0.001). Compared with the control and SS groups, diet supplemented with SeGlu enhanced glutathione peroxidase (GSH-Px) activity and total antioxidant capacity (T-AOC) in the spleen and oviduct as well as the scavenging ability of 2, 2-diphenyl-1-picrylhydrazyl free radical (DPPH) in the oviduct (P < 0.05). Compared with the control group, SeGlu treatment resulted in an increase (P < 0.05) in GSH-Px activity, T-AOC, and scavenging abilities of hydroxyl radical and DPPH in the liver of hens. In addition, dietary SeGlu and SS decreased the hydrogen peroxide level in the oviduct in comparison to the control group (P < 0.05). Therefore, dietary SeGlu increased Se concentration and antioxidant ability in the liver, oviduct, and spleen of laying hens. Moreover, SeGlu may be used as a potential source of Se additive in laying hen production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data and material generated or used during the study are available from the corresponding author by request.

Code Availability

Not applicable.

References

  1. Fellenberg MA, Speisky H (2006) Antioxidants: their effects on broiler oxidative stress and its meat oxidative stability. Worlds Poult Sci J 62:53–70. https://doi.org/10.1079/WPS200584

    Article  Google Scholar 

  2. Chen X, Zhang L, Li J, Gao F, Zhou G (2017) Hydrogen peroxide-induced change in meat quality of the breast muscle of broilers is mediated by ROS generation, apoptosis, and autophagy in the NF-κB signal pathway. J Agric Food Chem 65:3986–3994. https://doi.org/10.1021/acs.jafc.7b01267

    Article  CAS  PubMed  Google Scholar 

  3. Zhang J, Bai KW, He JT, Niu Y, Lu Y, Zhang LL, Wang T (2018) Curcumin attenuates hepatic mitochondrial dysfunction through the maintenance of thiol pool, inhibition of mtDNA damage, and stimulation of the mitochondrial thioredoxin system in heat-stressed broilers. J Anim Sci 96:867–879. https://doi.org/10.1093/jas/sky009

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ray PD, Huang BW, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24:981–990. https://doi.org/10.1016/j.cellsig.2012.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dai B, Zhang YS, Ma ZL, Zheng LH, Li SJ, Dou XH, Gong JS, Miao JF (2015) Influence of dietary taurine and housing density on oviduct function in laying hens. J Zhejiang Univ Sci B 16:456–464. https://doi.org/10.1631/jzus.B1400256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wasti S, Sah N, Mishra B (2020) Impact of heat stress on poultry health and performances, and potential mitigation strategies. Animals 10:1266. https://doi.org/10.3390/ani10081266

    Article  PubMed Central  Google Scholar 

  7. Rozenboim I, Tako E, Gal-Garber O (2007) The effect of heat stress on ovarian function of laying hens. Poult Sci 86:1760–1765. https://doi.org/10.1093/ps/86.8.1760

    Article  CAS  PubMed  Google Scholar 

  8. Nido SA, Shituleni SA, Mengistu BM, Liu Y, Khan AZ, Gan F, Kumbhar S, Huang K (2016) Effects of selenium-enriched probiotics on lipid metabolism, antioxidative status, histopathological lesions, and related gene expression in mice fed a high-fat diet. Biol Trace Elem Res 171:399–409. https://doi.org/10.1007/s12011-015-0552-8

    Article  CAS  PubMed  Google Scholar 

  9. Wang Y, Zhan X, Yuan D, Zhang X, Wu R (2011) Influence of dietary selenomethionine supplementation on performance and selenium status of broiler breeders and their subsequent progeny. Biol Trace Elem Res 143:1497–1507. https://doi.org/10.1007/s12011-011-8976-2

    Article  CAS  PubMed  Google Scholar 

  10. Hawkes WC, Alkan Z (2010) Regulation of redox signaling by selenoproteins. Biol Trace Elem Res 134:235–251. https://doi.org/10.1007/s12011-010-8656-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jing CL, Dong XF, Wang ZM, Liu S, Tong JM (2015) Comparative study of DL-selenomethionine vs sodium selenite and seleno-yeast on antioxidant activity and selenium status in laying hens. Poult Sci 94:965–975. https://doi.org/10.3382/ps/pev045

    Article  CAS  PubMed  Google Scholar 

  12. Liao X, Lu L, Li S, Liu S, Zhang L, Wang G, Li A, Luo X (2012) Effects of selenium source and level on growth performance, tissue selenium concentrations, antioxidation, and immune functions of heat-stressed broilers. Biol Trace Elem Res 150:158–165. https://doi.org/10.1007/s12011-012-9517-3

    Article  CAS  PubMed  Google Scholar 

  13. Pavlović Z, Miletić I, Jokić Z, Sobajić S (2009) The effect of dietary selenium source and level on hen production and egg selenium concentration. Biol Trace Elem Res 131:263–270. https://doi.org/10.1007/s12011-009-8369-y

    Article  CAS  PubMed  Google Scholar 

  14. Jlali M, Briens M, Rouffineau F, Mercerand F, Geraert PA, Mercier Y (2013) Effect of 2-hydroxy-4-methylselenobutanoic acid as a dietary selenium supplement to improve the selenium concentration of table eggs. J Anim Sci 91:1745–1752. https://doi.org/10.2527/jas.2012-5825

    Article  CAS  PubMed  Google Scholar 

  15. Zhou WJ, Li PZ, Liu J, Yu L (2020) Kilogram-scale production of selenized glucose. Ind Eng Chem Res 59:10763–10767. https://doi.org/10.1021/acs.iecr.0c01147

    Article  CAS  Google Scholar 

  16. NRC (1994) Nutrient requirements of poultry, 9th edn. National Academy Press, Washington, DC

    Google Scholar 

  17. IBM SPSS Inc (2013) SPSS Base 22.0 for Windows User’s Guide. Chicago, IL. USA

  18. Lu J, Holmgren A (2009) Selenoproteins. J Biol Chem 284:723–727. https://doi.org/10.1074/jbc.R800045200

    Article  CAS  PubMed  Google Scholar 

  19. Payne RL, Lavergne TK, Southern LL (2005) Effect of inorganic versus organic selenium on hen production and egg selenium concentration. Poult Sci 84:232–237. https://doi.org/10.1093/ps/84.2.232

    Article  CAS  PubMed  Google Scholar 

  20. NRC (2005) Mineral tolerance of animals, 2nd revised edn. National Academy Press, Washington, DC

    Google Scholar 

  21. Chantiratikul A, Chinrasri O, Chantiratikul P (2008) Effect of sodium selenite and zinc-L-selenomethionine on performance and selenium concentrations in eggs of laying hens. Asian Australas J Anim Sci 21:1048–1052. https://doi.org/10.5713/ajas.2008.70576

    Article  CAS  Google Scholar 

  22. Bennett DC, Cheng KM (2010) Selenium enrichment of table eggs. Poult Sci 89:2166–2172. https://doi.org/10.3382/ps.2009-00571

    Article  CAS  PubMed  Google Scholar 

  23. Pan C, Huang K, Zhao Y, Qin S, Chen F, Hu Q (2007) Effect of selenium source and level in hen’s diet on tissue selenium deposition and egg selenium concentrations. J Agric Food Chem 55:1027–1032. https://doi.org/10.1021/jf062010a

    Article  CAS  PubMed  Google Scholar 

  24. Brennan KM, Crowdus CA, Cantor AH, Pescatore AJ, Barger JL, Horgan K, Xiao R, Power RF, Dawson KA (2011) Effects of organic and inorganic dietary selenium supplementation on gene expression profiles in oviduct tissue from broiler-breeder hens. Anim Reprod Sci 125:180–188. https://doi.org/10.1016/j.anireprosci.2011.02.027

    Article  CAS  PubMed  Google Scholar 

  25. Khoso PA, Zhang Y, Yin H, Teng X, Li S (2019) Selenium deficiency affects immune function by influencing selenoprotein and cytokine expression in chicken spleen. Biol Trace Elem Res 187:506–516. https://doi.org/10.1007/s12011-018-1396-9

    Article  CAS  PubMed  Google Scholar 

  26. Chung CK (1985) Identification of methionine as a possible precursor to the selenocysteine catalytic site of glutathione peroxidase. Dissertation, Texas Tech University

  27. Wan X, Ju G, Xu L, Yang H, Wang Z (2020) Selenomethionine improves antioxidant capacity of breast muscle in geese via stimulating glutathione system and thiol pool. Biol Trace Elem Res 198:253–259. https://doi.org/10.1007/s12011-020-02052-8

    Article  CAS  PubMed  Google Scholar 

  28. Han XJ, Qin P, Li WX, Ma QG, Ji C, Zhang JY, Zhao LH (2017) Effect of sodium selenite and selenium yeast on performance, egg quality, antioxidant capacity, and selenium deposition of laying hens. Poult Sci 96:3973–3980. https://doi.org/10.3382/ps/pex216

    Article  CAS  PubMed  Google Scholar 

  29. Khanam A, Platel K (2019) Bioavailability and bioactivity of selenium from wheat (Triticum aestivum), maize (Zea mays), and pearl millet (Pennisetum glaucum), in selenium-deficient rats. J Agric Food Chem 67:6366–6376. https://doi.org/10.1021/acs.jafc.9b02614

    Article  CAS  PubMed  Google Scholar 

  30. Wan XL, Ju GY, Xu L, Yang HM, Wang ZY (2019) Dietary selenomethionine increases antioxidant capacity of geese by improving glutathione and thioredoxin systems. Poult Sci 98:3763–3769. https://doi.org/10.3382/ps/pez066

    Article  CAS  PubMed  Google Scholar 

  31. Gessner DK, Ringseis R, Eder K (2017) Potential of plant polyphenols to combat oxidative stress and inflammatory processes in farm animals. J Anim Physiol Anim Nutr (Berl) 101:605–628. https://doi.org/10.1111/jpn.12579

    Article  CAS  Google Scholar 

  32. Wan X, Ahmad H, Zhang L, Wang Z, Wang T (2018) Dietary enzymatically treated Artemisia annua L. improves meat quality, antioxidant capacity and energy status of breast muscle in heat-stressed broilers. J Sci Food Agric 98:3715–3721. https://doi.org/10.1002/jsfa.8879

    Article  CAS  PubMed  Google Scholar 

  33. Ali SE, El Gedaily RA, Mocan A, Farag MA, El-Seedi HR (2019) Profiling metabolites and biological activities of sugarcane (Saccharum officinarum Linn.) juice and its product molasses via a multiplex metabolomics approach.[J]. Molecules 24:934. https://doi.org/10.3390/molecules24050934

    Article  CAS  PubMed Central  Google Scholar 

  34. Baowei W, Guoqing H, Qiaoli W, Bin Y (2011) Effects of yeast selenium supplementation on the growth performance, meat quality, immunity, and antioxidant capacity of goose. J Anim Physiol Anim Nutr (Berl) 95:440–448. https://doi.org/10.1111/j.1439-0396.2010.01070.x

    Article  CAS  Google Scholar 

  35. Sánchez-Valle V, Chávez-Tapia NC, Uribe M, Méndez-Sánchez N (2012) Role of oxidative stress and molecular changes in liver fibrosis: a review. Curr Med Chem 19:4850–4860. https://doi.org/10.2174/092986712803341520

    Article  PubMed  Google Scholar 

  36. Bae SM, Lim W, Jeong W, Lee JY, Kim J, Han JY, Bazer FW, Song G (2014) Hormonal regulation of beta-catenin during development of the avian oviduct and its expression in epithelial cell-derived ovarian carcinogenesis. Mol Cell Endocrinol 382:46–54. https://doi.org/10.1016/j.mce.2013.09.010

    Article  CAS  PubMed  Google Scholar 

  37. Sonoda Y, Abdel Mageed AM, Isobe N, Yoshimura Y (2013) Induction of avian β-defensins by CpG oligodeoxynucleotides and proinflammatory cytokines in hen vaginal cells in vitro. Reproduction 145:621–631. https://doi.org/10.1530/REP-12-0518

    Article  CAS  PubMed  Google Scholar 

  38. Agarwal A, Rana M, Qiu E, AlBunni H, Bui AD, Henkel R (2018) Role of oxidative stress, infection and inflammation in male infertility. Andrologia 50:e13126. https://doi.org/10.1111/and.13126

    Article  CAS  PubMed  Google Scholar 

  39. Lim J, Luderer U (2010) Oxidative damage increases and antioxidant gene expression decreases with aging in the mouse ovary. Biol Reprod 84:775–782. https://doi.org/10.1095/biolreprod.110.088583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Jiangsu Province Major Agricultural New Varieties Creation Project (PZCZ201731), Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and Jiangsu Provincial Six Talent Peaks Project (XCL-090).

Author information

Authors and Affiliations

Authors

Contributions

Daoqing Gong and Lei Yu conceived and designed the experiments and participated in the final interpretation of the data; Minmeng Zhao, Qingyun Sun, and Mawahib Khedir Khogali acquired and analyzed the data; Minmeng Zhao, Long Liu, and Tuoyu Geng drafted the manuscript, and L. Y. finalized it.

Corresponding author

Correspondence to Daoqing Gong.

Ethics declarations

Ethics Approval and Consent to Participate

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Consent to participate is not applicable.

Consent for Publication

All authors agreed to submit this manuscript for publication in Biological Trace Element Research.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 18 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Sun, Q., Khogali, M.K. et al. Dietary Selenized Glucose Increases Selenium Concentration and Antioxidant Capacity of the Liver, Oviduct, and Spleen in Laying Hens. Biol Trace Elem Res 199, 4746–4752 (2021). https://doi.org/10.1007/s12011-021-02603-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02603-7

Keywords

Navigation