Skip to main content

Advertisement

Log in

CAR T Cell Therapy in Pancreaticobiliary Cancers: a Focused Review of Clinical Data

  • Review Article
  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Objective

CAR T cell therapy is an innovative approach to treat cancers in the modern era. It utilizes the application of chimeric antigen receptors targeted against specific antigens expressed by the tumor cells. Although its efficacy is established in hematological malignancies, the safety and efficacy of this therapy in solid tumors, especially pancreaticobiliary cancers, is a highly investigated aspect. A focused review of clinical data was conducted to examine the outcomes of this therapy in pancreaticobiliary cancers.

Methods

A comprehensive literature search was done on Medline and Embase databases through April 24, 2020 for studies that evaluated the outcomes of CAR T cell therapy in pancreaticobiliary cancers.

Results

There were six phase 1 trials, while one was phase 1/2. Some of these trials were specifically done for pancreaticobiliary cancers, while others included patients of various solid organ cancers, including pancreatic and biliary tract cancers. The target antigens for therapy in these trials included mesothelin, CD133, prostate stem cell antigen, claudin 18.2, epidermal growth factor receptor, and human epidermal growth factor receptor 2. CAR T cell therapy has shown very few grade 3 and 4 side effects. Most of the adverse events are associated with cytokine release syndrome.

Conclusion

CAR T cell therapy has a manageable safety profile based on phase 1 studies, and efficacy assessments are currently ongoing in dose expansion and phase 2 studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Sadelain M, Brentjens R, Rivière I. The promise and potential pitfalls of chimeric antigen receptors. Curr Opin Immunol. 2009;21(2):215–23. https://doi.org/10.1016/j.coi.2009.02.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stern LA, Jonsson VD, Priceman SJ. CAR T cell therapy progress and challenges for solid tumors. Cancer Treat Res. 2020;180:297–326. https://doi.org/10.1007/978-3-030-38862-1_11.

    Article  CAS  PubMed  Google Scholar 

  3. Billingham RE, Brent L, Medawar PB, Sparrow EM. Quantitative studies on tissue transplantation immunity. I. The survival times of skin homografts exchanged between members of different inbred strains of mice. Proc R Soc Lond B Biol Sci. 1954;143(910):43–58. https://doi.org/10.1098/rspb.1954.0053.

    Article  CAS  PubMed  Google Scholar 

  4. Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365(8):725–33. https://doi.org/10.1056/NEJMoa1103849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kochenderfer JN, Wilson WH, Janik JE, Dudley ME, Stetler-Stevenson M, Feldman SA, et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood. 2010;116(20):4099–102. https://doi.org/10.1182/blood-2010-04-281931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. van der Stegen SJC, Hamieh M, Sadelain M. The pharmacology of second-generation chimeric antigen receptors. Nat Rev Drug Discov. 2015;14(7):499–509. https://doi.org/10.1038/nrd4597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Allegra A, Innao V, Gerace D, Vaddinelli D, Musolino C. Adoptive immunotherapy for hematological malignancies: current status and new insights in chimeric antigen receptor T cells. Blood Cells Mol Dis. 2016;62:49–63. https://doi.org/10.1016/j.bcmd.2016.11.001.

    Article  CAS  PubMed  Google Scholar 

  8. Kueberuwa G, Kalaitsidou M, Cheadle E, Hawkins RE, Gilham DE. CD19 CAR T cells expressing IL-12 eradicate lymphoma in fully lymphoreplete mice through induction of host immunity. Mol Ther Oncolytics. 2018;8:41–51. https://doi.org/10.1016/j.omto.2017.12.003.

    Article  CAS  PubMed  Google Scholar 

  9. Park JH, Rivière I, Gonen M, Wang X, Sénéchal B, Curran KJ, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018;378(5):449–59. https://doi.org/10.1056/NEJMoa1709919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–17. https://doi.org/10.1056/NEJMoa1407222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med. 2016;375(26):2561–9. https://doi.org/10.1056/NEJMoa1610497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Heczey A, Louis CU, Savoldo B, Dakhova O, Durett A, Grilley B, et al. CAR T cells administered in combination with lymphodepletion and PD-1 inhibition to patients with neuroblastoma. Mol Ther. 2017;25(9):2214–24. https://doi.org/10.1016/j.ymthe.2017.05.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Köksal H, Müller E, Inderberg EM, Bruland Ø, Wälchli S. Treating osteosarcoma with CAR T cells. Scand J Immunol. 2019;89(3):e12741. https://doi.org/10.1111/sji.12741.

    Article  PubMed  Google Scholar 

  14. Bagley SJ, O’Rourke DM. Clinical investigation of CAR T cells for solid tumors: lessons learned and future directions. Pharmacol Ther. 2020;205(no pagination):107419. https://doi.org/10.1016/j.pharmthera.2019.107419.

  15. Abakushina EV, Gelm YV, Pasova IA, Bazhin AV. Immunotherapeutic approaches for the treatment of colorectal cancer. Biochemistry (Mosc). 2019;84(7):720–8. https://doi.org/10.1134/s0006297919070046.

    Article  CAS  Google Scholar 

  16. Zhu CZ, Liu D, Kang WM. Immunotherapy of gastrointestinal stromal tumors. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2019;41(5):696–701. https://doi.org/10.3881/j.issn.1000-503X.11097.

    Article  PubMed  Google Scholar 

  17. Nishida T, Kataoka H. Glypican 3-targeted therapy in hepatocellular carcinoma. Cancers (Basel). 2019;11(9). https://doi.org/10.3390/cancers11091339.

  18. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30. https://doi.org/10.3322/caac.21387.

    Article  PubMed  Google Scholar 

  19. Ryan DP, Hong TS, Bardeesy N. Pancreatic adenocarcinoma. N Engl J Med. 2014;371(11):1039–49. https://doi.org/10.1056/NEJMra1404198.

    Article  CAS  PubMed  Google Scholar 

  20. Varghese AM. Chimeric antigen receptor (CAR) T and other T cell strategies for pancreas adenocarcinoma. Chin Clin Oncol. 2017;6(6):66. https://doi.org/10.21037/cco.2017.09.04.

    Article  PubMed  Google Scholar 

  21. Feng K, Liu Y, Guo Y, Qiu J, Wu Z, Dai H, et al. Phase I study of chimeric antigen receptor modified T cells in treating HER2-positive advanced biliary tract cancers and pancreatic cancers. Protein Cell. 2018;9(10):838–47. https://doi.org/10.1007/s13238-017-0440-4.

    Article  CAS  PubMed  Google Scholar 

  22. Beatty GL, Haas AR, Maus MV, Torigian DA, Soulen MC, Plesa G, et al. Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies. Cancer Immunol Res. 2014;2(2):112–20. https://doi.org/10.1158/2326-6066.Cir-13-0170.

    Article  CAS  PubMed  Google Scholar 

  23. Becerra CR, Manji GA, Kim DW, Gardner O, Malankar A, Shaw J, et al. Ligand-inducible, prostate stem cell antigen (PSCA)-directed GoCAR-T cells in advanced solid tumors: preliminary results with cyclophosphamide (Cy) +/- fludarabine (Flu) lymphodepletion (LD). J Clin Oncol Conference. 2019;37(Supplement 15). https://doi.org/10.1200/JCO.2019.37.15-suppl.2536.

  24. Yazdanifar M, Zhou R, Grover P, Williams C, Bose M, Moore LJ, et al. Overcoming immunological resistance enhances the efficacy of a novel anti-tMUC1-CAR T cell treatment against pancreatic ductal adenocarcinoma. Cells. 2019;8(9). https://doi.org/10.3390/cells8091070.

  25. Zhan X, Wang B, Li Z, Li J, Wang H, Chen L, et al. Phase I trial of Claudin 18.2-specific chimeric antigen receptor T cells for advanced gastric and pancreatic adenocarcinoma. J Clin Oncol Conference. 2019;37(Supplement 15). https://doi.org/10.1200/JCO.2019.37.15_suppl.2509.

  26. Kruger S, Ilmer M, Kobold S, Cadilha BL, Endres S, Ormanns S, et al. Advances in cancer immunotherapy 2019 - latest trends. J Exp Clin Cancer Res. 2019;38(1):268. https://doi.org/10.1186/s13046-019-1266-0.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hou B, Tang Y, Li W, Zeng Q, Chang D. Efficiency of CAR-T therapy for treatment of solid tumor in clinical trials: a meta-analysis. Dis Markers. 2019;2019:3425291–11. https://doi.org/10.1155/2019/3425291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chang K, Pastan I, Willingham MC. Isolation and characterization of a monoclonal antibody, K1, reactive with ovarian cancers and normal mesothelium. Int J Cancer. 1992;50(3):373–81. https://doi.org/10.1002/ijc.2910500308.

    Article  CAS  PubMed  Google Scholar 

  29. O’Hara M, Stashwick C, Haas AR, Tanyi JL. Mesothelin as a target for chimeric antigen receptor-modified T cells as anticancer therapy. Immunotherapy. 2016;8(4):449–60. https://doi.org/10.2217/imt.16.4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Argani P, Iacobuzio-Donahue C, Ryu B, Rosty C, Goggins M, Wilentz RE, et al. Mesothelin is overexpressed in the vast majority of ductal adenocarcinomas of the pancreas: identification of a new pancreatic cancer marker by serial analysis of gene expression (SAGE). Clin Cancer Res. 2001;7(12):3862–8.

    CAS  PubMed  Google Scholar 

  31. Hassan R, Laszik ZG, Lerner M, Raffeld M, Postier R, Brackett D. Mesothelin is overexpressed in pancreaticobiliary adenocarcinomas but not in normal pancreas and chronic pancreatitis. Am J Clin Pathol. 2005;124(6):838–45.

    Article  CAS  Google Scholar 

  32. Einama T, Kawamata F, Kamachi H, Nishihara H, Homma S, Matsuzawa F, et al. Clinical impacts of mesothelin expression in gastrointestinal carcinomas. World J Gastrointest Pathophysiol. 2016;7(2):218–22. https://doi.org/10.4291/wjgp.v7.i2.218.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Beatty GL, O’Hara MH, Lacey SF, Torigian DA, Nazimuddin F, Chen F, et al. Activity of mesothelin-specific chimeric antigen receptor T cells against pancreatic carcinoma metastases in a phase 1 trial. Gastroenterology. 2018;155(1):29–32. https://doi.org/10.1053/j.gastro.2018.03.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Haas AR, Tanyi JL, O’Hara MH, Gladney WL, Lacey SF, Torigian DA, et al. Phase I study of lentiviral-transduced chimeric antigen receptor-modified T cells recognizing mesothelin in advanced solid cancers. Mol Ther. 2019;27(11):1919–29. https://doi.org/10.1016/j.ymthe.2019.07.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ren F, Sheng WQ, Du X. CD133: a cancer stem cells marker, is used in colorectal cancers. World J Gastroenterol. 2013;19(17):2603–11. https://doi.org/10.3748/wjg.v19.i17.2603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Glumac PM, LeBeau AM. The role of CD133 in cancer: a concise review. Clin Transl Med. 2018;7(1):18. https://doi.org/10.1186/s40169-018-0198-1.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Park YY, An CH, Oh ST, Chang ED, Lee J. Expression of CD133 is associated with poor prognosis in stage II colorectal carcinoma. Medicine (Baltimore). 2019;98(32):e16709. https://doi.org/10.1097/md.0000000000016709.

    Article  Google Scholar 

  38. Yu GF, Lin X, Luo RC, Fang WY. Nuclear CD133 expression predicts poor prognosis for hepatocellular carcinoma. Int J Clin Exp Pathol. 2018;11(4):2092–9.

    PubMed  PubMed Central  Google Scholar 

  39. Feng KC, Guo YL, Liu Y, Dai HR, Wang Y, Lv HY, et al. Cocktail treatment with EGFR-specific and CD133-specific chimeric antigen receptor-modified T cells in a patient with advanced cholangiocarcinoma. J Hematol Oncol. 2017;10(1):4. https://doi.org/10.1186/s13045-016-0378-7.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wang Y, Chen M, Wu Z, Tong C, Dai H, Guo Y, et al. CD133-directed CAR T cells for advanced metastasis malignancies: a phase I trial. OncoImmunology. 2018;7(7). https://doi.org/10.1080/2162402X.2018.1440169.

  41. Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S. Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol. 1998;141(7):1539–50. https://doi.org/10.1083/jcb.141.7.1539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Resnick MB, Konkin T, Routhier J, Sabo E, Pricolo VE. Claudin-1 is a strong prognostic indicator in stage II colonic cancer: a tissue microarray study. Mod Pathol. 2005;18(4):511–8. https://doi.org/10.1038/modpathol.3800301.

    Article  CAS  PubMed  Google Scholar 

  43. Sanada Y, Oue N, Mitani Y, Yoshida K, Nakayama H, Yasui W. Down-regulation of the claudin-18 gene, identified through serial analysis of gene expression data analysis, in gastric cancer with an intestinal phenotype. J Pathol. 2006;208(5):633–42. https://doi.org/10.1002/path.1922.

    Article  CAS  PubMed  Google Scholar 

  44. Cheung ST, Leung KL, Ip YC, Chen X, Fong DY, Ng IO, et al. Claudin-10 expression level is associated with recurrence of primary hepatocellular carcinoma. Clin Cancer Res. 2005;11(2 Pt 1):551–6.

    CAS  PubMed  Google Scholar 

  45. Morin PJ. Claudin proteins in human cancer: promising new targets for diagnosis and therapy. Cancer Res. 2005;65(21):9603–6. https://doi.org/10.1158/0008-5472.Can-05-2782.

    Article  CAS  PubMed  Google Scholar 

  46. Saeki N, Gu J, Yoshida T, Wu X. Prostate stem cell antigen: a Jekyll and Hyde molecule? Clin Cancer Res. 2010;16(14):3533–8. https://doi.org/10.1158/1078-0432.Ccr-09-3169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sharom FJ, Radeva G. GPI-anchored protein cleavage in the regulation of transmembrane signals. Subcell Biochem. 2004;37:285–315. https://doi.org/10.1007/978-1-4757-5806-1_9.

    Article  CAS  PubMed  Google Scholar 

  48. Reiter RE, Gu Z, Watabe T, Thomas G, Szigeti K, Davis E, et al. Prostate stem cell antigen: a cell surface marker overexpressed in prostate cancer. Proc Natl Acad Sci U S A. 1998;95(4):1735–40. https://doi.org/10.1073/pnas.95.4.1735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sun X, Liu S, Wang D, Zhang Y, Li W, Guo Y, et al. Colorectal cancer cells suppress CD4+ T cells immunity through canonical Wnt signaling. Oncotarget. 2017;8(9):15168–81. https://doi.org/10.18632/oncotarget.14834.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2(2):127–37. https://doi.org/10.1038/35052073.

    Article  CAS  PubMed  Google Scholar 

  51. Olayioye MA, Neve RM, Lane HA, Hynes NE. The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J. 2000;19(13):3159–67. https://doi.org/10.1093/emboj/19.13.3159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Normanno N, Bianco C, De Luca A, Salomon DS. The role of EGF-related peptides in tumor growth. Front Biosci. 2001;6:D685–707. https://doi.org/10.2741/normano.

    Article  CAS  PubMed  Google Scholar 

  53. Yamaoka T, Ohba M, Ohmori T. Molecular-targeted therapies for epidermal growth factor receptor and its resistance mechanisms. Int J Mol Sci. 2017;18(11). https://doi.org/10.3390/ijms18112420.

  54. Guo Y, Feng K, Liu Y, Wu Z, Dai H, Yang Q, et al. Phase I study of chimeric antigen receptor-modified T cells in patients with EGFR-positive advanced biliary tract cancers. Clin Cancer Res. 2018;24(6):1277–86. https://doi.org/10.1158/1078-0432.CCR-17-0432.

    Article  CAS  PubMed  Google Scholar 

  55. Cho HS, Mason K, Ramyar KX, Stanley AM, Gabelli SB, Denney DW Jr, et al. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature. 2003;421(6924):756–60. https://doi.org/10.1038/nature01392.

    Article  CAS  PubMed  Google Scholar 

  56. Riese DJ 2nd, Stern DF. Specificity within the EGF family/ErbB receptor family signaling network. Bioessays. 1998;20(1):41–8. https://doi.org/10.1002/(sici)1521-1878(199801)20:1<41::Aid-bies7>3.0.Co;2-v.

    Article  PubMed  Google Scholar 

  57. Burstein HJ. The distinctive nature of HER2-positive breast cancers. N Engl J Med. 2005;353(16):1652–4. https://doi.org/10.1056/NEJMp058197.

    Article  CAS  PubMed  Google Scholar 

  58. Berchuck A, Kamel A, Whitaker R, Kerns B, Olt G, Kinney R, et al. Overexpression of HER-2/neu is associated with poor survival in advanced epithelial ovarian cancer. Cancer Res. 1990;50(13):4087–91.

    CAS  PubMed  Google Scholar 

  59. Santin AD, Bellone S, Van Stedum S, Bushen W, Palmieri M, Siegel ER, et al. Amplification of c-erbB2 oncogene: a major prognostic indicator in uterine serous papillary carcinoma. Cancer. 2005;104(7):1391–7. https://doi.org/10.1002/cncr.21308.

    Article  CAS  PubMed  Google Scholar 

  60. Tanner M, Hollmén M, Junttila TT, Kapanen AI, Tommola S, Soini Y, et al. Amplification of HER-2 in gastric carcinoma: association with topoisomerase IIalpha gene amplification, intestinal type, poor prognosis and sensitivity to trastuzumab. Ann Oncol. 2005;16(2):273–8. https://doi.org/10.1093/annonc/mdi064.

    Article  CAS  PubMed  Google Scholar 

  61. Romond EH, Perez EA, Bryant J, Suman VJ, Geyer CE Jr, Davidson NE, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med. 2005;353(16):1673–84. https://doi.org/10.1056/NEJMoa052122.

    Article  CAS  PubMed  Google Scholar 

  62. Zhou R, Yazdanifar M, Roy LD, Whilding LM, Gavrill A, Maher J, et al. CAR T cells targeting the tumor MUC1 glycoprotein reduce triple-negative breast cancer growth. Front Immunol. 2019;10:1149. https://doi.org/10.3389/fimmu.2019.01149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. PersonGen BioTherapeutics Co. L, Hefei TFPsHo, Hospital HB. CAR-pNK cell immunotherapy in MUC1 positive relapsed or refractory solid tumor. 2016. https://ClinicalTrials.gov/show/NCT02839954,

  64. PersonGen BioTherapeutics Co. L, Hefei TFPsHo, Hospital HB. Phase I/II study of anti-Mucin1 (MUC1) CAR T cells for patients with MUC1+ advanced refractory solid tumor. 2015. https://ClinicalTrials.gov/show/NCT02587689,

  65. DeSelm CJ, Tano ZE, Varghese AM, Adusumilli PS. CAR T-cell therapy for pancreatic cancer. J Surg Oncol. 2017;116(1):63–74. https://doi.org/10.1002/jso.24627.

    Article  PubMed  Google Scholar 

  66. Wang Z, Han W. Biomarkers of cytokine release syndrome and neurotoxicity related to CAR-T cell therapy. Biomark Res. 2018;6:4. https://doi.org/10.1186/s40364-018-0116-0.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Frey NV, Porter DL. Cytokine release syndrome with novel therapeutics for acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program. 2016;2016(1):567–72. https://doi.org/10.1182/asheducation-2016.1.567.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Martinez M, Moon EK. CAR T cells for solid tumors: new strategies for finding, infiltrating, and surviving in the tumor microenvironment. Front Immunol. 2019;10:128. https://doi.org/10.3389/fimmu.2019.00128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Labanieh L, Majzner RG, Mackall CL. Programming CAR-T cells to kill cancer. Nat Biomed Eng. 2018;2(6):377–91. https://doi.org/10.1038/s41551-018-0235-9.

    Article  CAS  PubMed  Google Scholar 

  70. Gajewski TF, Meng Y, Blank C, Brown I, Kacha A, Kline J, et al. Immune resistance orchestrated by the tumor microenvironment. Immunol Rev. 2006;213:131–45. https://doi.org/10.1111/j.1600-065X.2006.00442.x.

    Article  CAS  PubMed  Google Scholar 

  71. Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A. 2002;99(19):12293–7. https://doi.org/10.1073/pnas.192461099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gorelik L, Flavell RA. Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells. Nat Med. 2001;7(10):1118–22. https://doi.org/10.1038/nm1001-1118.

    Article  CAS  PubMed  Google Scholar 

  73. Pegram HJ, Lee JC, Hayman EG, Imperato GH, Tedder TF, Sadelain M, et al. Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood. 2012;119(18):4133–41. https://doi.org/10.1182/blood-2011-12-400044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. John LB, Devaud C, Duong CP, Yong CS, Beavis PA, Haynes NM, et al. Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clin Cancer Res. 2013;19(20):5636–46. https://doi.org/10.1158/1078-0432.Ccr-13-0458.

    Article  CAS  PubMed  Google Scholar 

  75. Katz SC, Burga RA, McCormack E, Wang LJ, Mooring W, Point GR, et al. Phase I hepatic immunotherapy for metastases study of intra-arterial chimeric antigen receptor-modified T-cell therapy for CEA+ liver metastases. Clin Cancer Res. 2015;21(14):3149–59. https://doi.org/10.1158/1078-0432.Ccr-14-1421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Moon EK, Carpenito C, Sun J, Wang LC, Kapoor V, Predina J, et al. Expression of a functional CCR2 receptor enhances tumor localization and tumor eradication by retargeted human T cells expressing a mesothelin-specific chimeric antibody receptor. Clin Cancer Res. 2011;17(14):4719–30. https://doi.org/10.1158/1078-0432.Ccr-11-0351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Caruana I, Savoldo B, Hoyos V, Weber G, Liu H, Kim ES, et al. Heparanase promotes tumor infiltration and anti-tumor activity of CAR-redirected T lymphocytes. Nat Med. 2015;21(5):524–9. https://doi.org/10.1038/nm.3833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All named authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship for this article, take responsibility for the integrity of the work as a whole, and have given their approval for this version to be published.

Corresponding author

Correspondence to Muhammad Yasir Anwar.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article is based on previously conducted studies, and the information is publicly available and does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

Not applicable.

Consent to Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anwar, M.Y., Williams, G.R. & Paluri, R.K. CAR T Cell Therapy in Pancreaticobiliary Cancers: a Focused Review of Clinical Data. J Gastrointest Canc 52, 1–10 (2021). https://doi.org/10.1007/s12029-020-00457-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-020-00457-1

Keywords

Navigation