Skip to main content

Advertisement

Log in

Neonatal Rotenone Administration Induces Psychiatric Disorder-Like Behavior and Changes in Mitochondrial Biogenesis and Synaptic Proteins in Adulthood

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Since psychiatric disorders are associated with changes in the development of the nervous system, an energy-dependent mechanism, we investigated whether mitochondrial inhibition during the critical neurodevelopment window in rodents would be able to induce metabolic alterations culminating in psychiatric-like behavior. We treated male Wistar rat puppies (P) with rotenone (Rot), an inhibitor of mitochondrial complex I, from postnatal days 5 to 11 (P5–P11). We demonstrated that at P60 and P120, Rot-treated animals showed hyperlocomotion and deficits in social interaction and aversive contextual memory, features observed in animal models of schizophrenia, autism spectrum disorder, and attention deficit hyperactivity disorder. During adulthood, Rot-treated rodents also presented modifications in CBP and CREB levels in addition to a decrease in mitochondrial biogenesis and Nrf1 expression. Additionally, NFE2L2-activation was not altered in Rot-treated P60 and P120 animals; an upregulation of pNFE2L2/ NFE2L2 was only observed in P12 cortices. Curiously, ATP/ADP levels did not change in all ages evaluated. Rot administration in newborn rodents also promoted modification in Rest and Mecp2 expression, and in synaptic protein levels, named PSD-95, Synaptotagmin-1, and Synaptophysin in the adult rats. Altogether, our data indicate that behavioral abnormalities and changes in synaptic proteins in adulthood induced by neonatal Rot administration might be a result of adjustments in CREB pathways and alterations in mitochondrial biogenesis and Nrf1 expression, rather than a direct deficiency of energy supply, as previously speculated. Consequently, Rot-induced psychiatric-like behavior would be an outcome of alterations in neuronal paths due to mitochondrial deregulation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article (and its Supplementary Information files).

References

  1. Agostini M, Romeo F, Inoue S, Niklison-Chirou M, Elia A, Dinsdale D et al (2016) Metabolic reprogramming during neuronal differentiation. Cell Death Differ 23(9):1502–1514. https://doi.org/10.1038/cdd.2016.36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mattson MP, Gleichmann M, Cheng A (2008) Mitochondria in neuroplasticity and neurological disorders. Neuron 60(5):748–766. https://doi.org/10.1016/j.neuron.2008.10.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sheng ZH, Cai Q (2012) Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nat Rev Neurosci 13(2):77–93. https://doi.org/10.1038/nrn3156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vayssiere JL, Cordeau-Lossouarn L, Larcher JC, Basseville M, Gros F, Croizat B (1992) Participation of the mitochondrial genome in the differentiation of neuroblastoma cells. In Vitro Cell Dev Biol 28A(11-12):763–772. https://doi.org/10.1007/bf02631065

    Article  CAS  PubMed  Google Scholar 

  5. Akopian G, Crawfordd C, Petzingerb G, Jakowecb MW, Walsh JP (2012) Brief mitochondrial inhibition causes lasting changes in motor behavior and corticostriatal synaptic physiology in the Fischer 344 rat. Neuroscience 215:149–159. https://doi.org/10.1016/j.neuroscience.2012.04.060

    Article  CAS  PubMed  Google Scholar 

  6. Cattane N, Richetto J, Cattaneoa A (2018) Prenatal exposure to environmental insults and enhanced risk of developing Schizophrenia and Autism Spectrum Disorder: Focus on biological pathways and epigenetic mechanisms. J Neubiorev S0149-7634(17):30972–30977. https://doi.org/10.1016/j.neubiorev.2018.07.001

    Article  CAS  Google Scholar 

  7. Ghiani CA, Faundez V (2017) Cellular and molecular mechanisms of neurodevelopmental disorders. J Neurosci Res 95(5):1093–1096. https://doi.org/10.1002/jnr.2404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dean B, Thomas N, Scarr E, Udawela M (2016) Evidence for impaired glucose metabolism in the striatum, obtained postmortem, from some subjects with schizophrenia. Transl Psychiatry 6:e949. https://doi.org/10.1038/tp.2016.226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. E Silva LFS, Brito MD, Yuzawa JMC, Rosenstock TR (2019) Mitochondrial dysfunction and changes in high-energy compounds in different cellular models associated to hypoxia: implication to schizophrenia. Sci Rep 9:18049. https://doi.org/10.1038/s41598-019-53605-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Filipo KH, Strack S (2017) An emerging role for mitochondrial dynamics in schizophrenia. Schizophr Res 187:26–32. https://doi.org/10.1016/j.schres.2017.05.003

    Article  Google Scholar 

  11. Kim SY, Cohen BM, Chen X, Lukas SE, Shinn AK, Yuksel AC, Li T, du F et al (2017) Redox dysregulation in schizophrenia revealed by in vivo NAD+/NADH measurement. Schizophr Bull 43(1):197–204. https://doi.org/10.1093/schbul/sbw129

    Article  PubMed  Google Scholar 

  12. Rowland LM, Pradhan S, Korenic S, Wijtenburg SA, Hong LE, Edden RA, Barker PB (2016) Elevated brain lactate in schizophrenia: a 7 T magnetic resonance spectroscopy study. Transl Psychiatry 6(11):e967. https://doi.org/10.1038/tp.2016.239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zuccoli GS, Saia-Cereda VM, Nascimento JM, Martins-de-Souza D (2017) The energy metabolism dysfunction in psychiatric disorders postmortem brains: focus on proteomic evidence. Front Neurosci 11:493. https://doi.org/10.3389/fnins.2017.00493

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cheng N, Rho JM, Masino AS (2017) Metabolic dysfunction underlying autism spectrum disorder and potential treatment approaches. Front Mol Neurosci 10:34. https://doi.org/10.3389/fnmol.2017.00034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chauhan A, Gu F, Essa MM, Wegiel J, Kaur K, Brown WT, Chauhan V (2011) Brain region-specific deficit in mitochondrial electron transport chain complexes in children with autism. J Neurochem 117:209–220. https://doi.org/10.1111/j.1471-4159.2011.07189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Goh S, Dong Z, Zhang Y, DiMauro S, Peterson BS (2014) Mitochondrial dysfunction as a neurobiological subtype of autism spectrum disorder: evidence from brain imaging. JAMA Psychiatry 71:665–671. https://doi.org/10.1001/jamapsychiatry.2014.179

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gu F, Chauhan V, Kaur K, Brown WT, LaFauci G, Wegiel J, Chauhan A (2013) Alterations in mitochondrial DNA copy number and the activities of electron transport chain complexes and pyruvate dehydrogenase in the frontal cortex from subjects with autism. Transl Psychiatry 3:e299. https://doi.org/10.1038/tp.2013.68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Siddiqui MF, Elwell C, Johnson MH (2016) Mitochondrial dysfunction in autism spectrum disorders. Autism Open Access 6(5):1000190. https://doi.org/10.4172/2165-7890.1000190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim JI, Lee SY, Park M, Kim SY, Kim JW, Kim SA, Kim BN (2019) Peripheral mitochondrial DNA copy number is increased in Korean attention-deficit hyperactivity disorder patients. Front Psychiatry 10:506. https://doi.org/10.3389/fpsyt.2019.00506

    Article  PubMed  PubMed Central  Google Scholar 

  20. Verma P, Singh A, Nthenge-Ngumbau DN, Rajamma U, Sinha S, Mukhopadhyay K, Mohanakumar KP (2016) Attention deficit-hyperactivity disorder suffers from mitochondrial dysfunction. BBA Clin 6:153–158. https://doi.org/10.1016/j.bbacli.2016.10.003

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bindokas VP, Lee CC, Colmers WF, Miller RJ (1998) Changes in mitochondrial function resulting from synaptic activity in the rat hippocampal slice. J Neurosci 18(12):4570–4587. https://doi.org/10.1523/JNEUROSCI.18-12-04570.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kann O, Kovacs R, Heinemann U (2003) Metabotropic receptor-mediated Ca2+signaling elevates mitochondrial Ca2+ and stimulates oxidative metabolism in hippocampal slice cultures. J Neurophysiol 90(2):613–621. https://doi.org/10.1152/jn.00042.2003

    Article  CAS  PubMed  Google Scholar 

  23. Levy M, Faas GC, Saggau P, Craigen WJ, Sweatt JD (2003) Mitochondrial regulation of synaptic plasticity in the hippocampus. J Biol Chem 278(20):17727–17734. https://doi.org/10.1074/jbc.M212878200

    Article  CAS  PubMed  Google Scholar 

  24. Tang Y, Zucker RS (1997) Mitochondrial involvement in post-tetanic potentiation of synaptic transmission. Neuron 18(3):483–491. https://doi.org/10.1016/s0896-6273(00)81248-9

    Article  CAS  PubMed  Google Scholar 

  25. Verstreken P, Ly CV, Venken KJ, Koh TW, Zhou Y, Bellen HJ (2005) Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron 47(3):365–378. https://doi.org/10.1016/j.neuron.2005.06.018

    Article  CAS  PubMed  Google Scholar 

  26. Yang F, He X-P, Russell J, Lu B (2003) Ca2+influx-independent synaptic potentiation mediated by mitochondrial Na+-Ca2+exchanger and protein kinase C. J Cell Biol 163(3):511–523. https://doi.org/10.1083/jcb.200307027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ishido M, Suzuki J, Masuo Y (2017) Neonatal rotenone lesions cause onset of hyperactivity during juvenile and adulthood in the rat. Toxicol Lett 266:42–48. https://doi.org/10.1016/j.toxlet.2016.12.008

    Article  CAS  PubMed  Google Scholar 

  28. Diehl KH, Hull R, Morton D, Pfister R, Rabemampianina Y, Smith D, Vidal JM, van de Vorstenbosch C et al (2001) A good practice guide to the administration of substances and removal of blood, including routes and volumes. J Appl Toxicol 21(1):15–23. https://doi.org/10.1002/jat.727

    Article  CAS  PubMed  Google Scholar 

  29. Naia L, Ferreira IL, Cunha-Oliveira T, Duarte AI, Ribeiro M, Rosenstock TR, Laço MN, Ribeiro MJ et al (2014) Activation of IGF-1 and insulin signaling pathways ameliorate mitochondrial function and energy metabolism in Huntington’s disease human lymphoblasts. Mol Neurobiol 51(1):331–348. https://doi.org/10.1007/s12035-014-8735-4

    Article  CAS  PubMed  Google Scholar 

  30. Arnsten AF, Casey BJ (2011) Prefrontal cortical organization and function: implications for externalizing disorders. Biol Psychiatry 69(12):1131–1132. https://doi.org/10.1016/j.biopsych.2011.03.010

    Article  PubMed  Google Scholar 

  31. Gamo NJ, Arnsten AF (2011) Molecular modulation of prefrontal cortex: rational development of treatments for psychiatric disorders. Behav Neurosci 125(3):282–296. https://doi.org/10.1037/a0023165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lipska B (2000) To Model a psychiatric disorder in animals schizophrenia as a reality test. Neuropsychopharmachol 23(3):223–239. https://doi.org/10.1016/S0893-133X(00)00137-8

    Article  CAS  Google Scholar 

  33. Wöhr M, Scattoni ML (2013) Behavioural methods used in rodent models of autism spectrum disorders: Current standards and new developments. Behav Brain Res 251:5–17. https://doi.org/10.1016/j.bbr.2013.05.047

    Article  PubMed  Google Scholar 

  34. Russell VA (2011) Overview of animal models of attention deficit hyperactivity disorder (ADHD). Cur Prot Neurosci Chapter 9:Unit9.35. https://doi.org/10.1002/0471142301.ns0935s54

    Article  Google Scholar 

  35. Calzavara MB, Levin R, Medrano WA, Almeida V, Sampaio AP, Barone LC et al (2011) Effects of antipsychotics and amphetamine on social behaviors in spontaneously hypertensive rats. Behav Brain Res 225(1):15–22. https://doi.org/10.1016/j.bbr.2011.06.026

    Article  CAS  PubMed  Google Scholar 

  36. Rosenstock TR, Carvalho AC, Jurkiewicz A, Frussa-Filho R, Smaili SS (2004) Mitochondrial calcium, oxidative stress and apoptosis in a neurodegenerative disease model induced by 3-nitropropionic acid. J Neurochem 88(5):1220–1228. https://doi.org/10.1046/j.1471-4159.2003.02250.x

    Article  CAS  PubMed  Google Scholar 

  37. Wilson CA, Koening JI (2014) Social interaction and social withdrawal in rodents as readouts for investigating the negative symptoms of schizophrenia. Eur Neuropsychopharmacol 24(5):759–773. https://doi.org/10.1016/j.euroneuro.2013.11.008

    Article  CAS  PubMed  Google Scholar 

  38. Vanderschuren LJ, Niesink RJ, Van Ree JM (1992) The neurobiology of social play behavior in rats. Neurosci Biobehav Rev 21(3):309–326. https://doi.org/10.1016/s0149-7634(96)00020-6

    Article  Google Scholar 

  39. Gur RE, McGrath C, Chan RM, Schroeder L, Turner T, Turetsky BI, Kohler C, Alsop D et al (2002) An fMRI study of facial emotion processing in patients with schizophrenia. Ame J Psychiatry 159(12):1992–1999. https://doi.org/10.1176/appi.ajp.159.12.1992

    Article  Google Scholar 

  40. Hall J, Harris JM, McKirdy JW, Johnstone EC, Lawrie SM (2007) Emotional memory in schizophrenia. Neuropsychologia 45(6):1152–1159. https://doi.org/10.1016/j.neuropsychologia.2006.10.012

    Article  PubMed  Google Scholar 

  41. Gill KM, Miller SA, Grace AA (2018) Impaired contextual fear-conditioning in MAM rodent model of schizophrenia. Schizophr Res 195:343–352. https://doi.org/10.1016/j.schres.2017.08.064

    Article  PubMed  Google Scholar 

  42. Naia L, Ribeiro M, Rodrigues J, Duarte AI, Lopes C, Rosenstock TR, Hayden MR, Rego AC (2016) Insulin and IGF-1 regularize energy metabolites in neural cells expressing full-length mutant. Neuropeptides 58:73–81. https://doi.org/10.1016/j.npep.2016.01.009

    Article  CAS  PubMed  Google Scholar 

  43. Naia L, Rosenstock TR, Oliveira AM, Oliveira-Sousa SI, Caldeira GL, Carmo C, Laço MN, Hayden MR et al (2017) Comparative mitochondrial-based protective effects of resveratrol and nicotinamide in Huntington’s disease models. Mol Neurobiol 54(7):5385–8399. https://doi.org/10.1007/s12035-016-0048-3

    Article  CAS  PubMed  Google Scholar 

  44. Araujo BG, Souza e Silva LF, de Barros Torresi JL, Siena A, Valerio BCO, Brito MD et al (2020) Decreased mitochondrial function, biogenesis, and degradation in peripheral blood mononuclear cells from amyotrophic lateral sclerosis patients as a potential tool for biomarker research. Mol Neurobiol 57:5084–5102. https://doi.org/10.1007/s12035-020-02059-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rosenstock TR, Duarte AI, Rego AC (2010) Mitochondrial-associated metabolic changes and neurodegeneration in Huntington’s disease - from clinical features to the bench. Curr Drug Targets 11(10):1218–1236. https://doi.org/10.2174/1389450111007011218

    Article  CAS  PubMed  Google Scholar 

  46. Rosenstock TR, de Brito OM, Lombardi V, Louros S, Ribeiro M, Almeida S, Ferreira IL, Oliveira CR et al (2011) FK506 ameliorates cell death features in Huntington’s disease striatal cell models. Neurochem Int 59(5):600–609. https://doi.org/10.1016/j.neuint.2011.04.009

    Article  CAS  PubMed  Google Scholar 

  47. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  48. Kopinski PK, Janssen KA, Schaefer PM, Trefely S, Perry CE, Potluri P, Tintos-Hernandez JA, Singh LN et al (2019) Regulation of nuclear epigenome by mitochondrial DNA heteroplasmy. Proc Natl Acad Sci U S A 116(32):16028–16035. https://doi.org/10.1073/pnas.1906896116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rodley CD, Grand RS, Gehlen LR, Greyling G, Jones MB, O'Sullivan JM (2012) Mitochondrial-nuclear DNA interactions contribute to the regulation of nuclear transcript levels as part of the inter-organelle communication system. PLoS One 7(1):e30943. https://doi.org/10.1371/journal.pone.0030943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Arnould T, Vankoningsloo S, Renard P, Houbion A, Ninane N, Demazy C, Remacle J, Raes M (2002) CREB activation induced by mitochondrial dysfunction is a new signaling pathway that impairs cell proliferation. EMBO J 21(1-2):53–63. https://doi.org/10.1093/emboj/21.1.53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee J, Kim CH, Simon DK, Aminova LR, Andreyev AY, Kushnareva YE, Murphy AN, Lonze BE et al (2005) Mitochondrial cyclic AMP response element-binding protein (CREB) mediates mitochondrial gene expression and neuronal survival. J Biol Chem 280(49):40398–40401. https://doi.org/10.1074/jbc.C500140200

    Article  CAS  PubMed  Google Scholar 

  52. Sanchis-Gomar F, García-Giménez JL, Gómez-Cabrera MC, Pallardó FV (2014) Mitochondrial biogenesis in health and disease. Molecular and therapeutic approaches. Curr Pharm Des 20(35):5619–5633. https://doi.org/10.2174/1381612820666140306095106

    Article  CAS  PubMed  Google Scholar 

  53. Choi J, Chandrasekaran K, Inoue T, Muragundla A, Russell JW (2014) PGC- 1α regulation of mitochondrial degeneration in experimental diabetic neuropathy. Neurobiol Dis 64:118–130. https://doi.org/10.1016/j.nbd.2014.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Weydt P, Pineda VV, Torrence AE, Libby RT, Satterfield TF, Lazarowski ER, Gilbert ML, Morton GJ et al (2006) Thermoregulatory and metabolic defects in Huntington’s disease transgenic mice implicate PGC-1α in Huntington’s disease neurodegeneration. Cell Metab 4:349–362. https://doi.org/10.1016/j.cmet.2006.10.004

    Article  CAS  PubMed  Google Scholar 

  55. Cartoni R, Léger B, Hock MB, Praz M, Crettenand A, Pich S (2005) Mitofusins 1/2 and ERRalpha expression are increased in human skeletal muscle after physical exercise. J Physiol 567(Pt 1):349–358. https://doi.org/10.1113/jphysiol.2005.092031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ngo HB, Lovely GA, Phillips R, Chan DC (2014) Distinct structural features of TFAM drive mitochondrial DNA packaging versus transcriptional activation. Nat Commun 546(2-3):181–184. https://doi.org/10.1038/ncomms4077

    Article  CAS  Google Scholar 

  57. Taherzadeh-Fard E, Saft C, Akkad DA, Wieczorek S, Haghikia A, Chan A, Epplen JT, Arning L (2011) PGC-1alpha downstream transcription factors NRF-1 and TFAM are genetic modifiers of Huntington disease. Mol Neurodegener 6:32. https://doi.org/10.1186/1750-1326-6-32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S et al (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98(1):115–124. https://doi.org/10.1016/S0092-8674(00)80611-X

    Article  CAS  PubMed  Google Scholar 

  59. Espositi MD (1998) Inhibitors dos NADH-ubiquinone reductase: an overview. Biochim Biophys Acta 1364(2):222–235. https://doi.org/10.1016/s0005-2728(98)00029-2

    Article  Google Scholar 

  60. Kalinichev M, Robbins MJ, Hartfield EM, Maycox PR, Moore SH, Savage KM, Austin NE, Jones DNC (2007) Comparison between intraperitoneal and subcutaneous phencyclidine administration in Sprague-Dawley rats: a locomotor activity and gene induction study. Prog Neuro-Psychopharmacol Biol Psychiatry 32(2):414–422. https://doi.org/10.1016/j.pnpbp.2007.09.008

    Article  CAS  Google Scholar 

  61. Sams-Dodd F (1995) Distinct effects of D-amphetamine and phencyclidine on the social behaviour of rats. Behav Pharmacol 6(1):55–65. https://doi.org/10.1097/00008877-199501000-00009

    Article  CAS  PubMed  Google Scholar 

  62. Winship IR, Dursun SM, Baker GB, Balista PA, Kandratavicius L, Maia-de-Oliveira JP, Hallak J, Howland JG (2019) An overview of animal models related to schizophrenia. Can J Psychiatr 64(1):5–17. https://doi.org/10.1177/0706743718773728

    Article  Google Scholar 

  63. Chadman KK (2017) Animal models for autism in 2017 and the consequential implications to drug discovery. Expert Opin Drug Discovery 12:12,1187–12,1194. https://doi.org/10.1080/17460441.2017.1383982

    Article  CAS  Google Scholar 

  64. Schneider T, Przewłocki R (2005) Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism. Neuropsychopharmacol 30:80–89. https://doi.org/10.1038/sj.npp.1300518

    Article  CAS  Google Scholar 

  65. Von Wrangel C, Schwabe K, John N, Krauss JK, Alam M (2015) The rotenone-induced rat model of Parkinson’s disease: behavioral and electrophysiological findings. Behav Brain Res 279:52–61. https://doi.org/10.1016/j.bbr.2014.11.002

    Article  CAS  Google Scholar 

  66. Zhang X, Du L, Zhang W, Yang Y, Zhou Q, Du G (2017) Therapeutic effects of baicalein on rotenone-induced Parkinson's disease through protecting mitochondrial function and biogenesis. Sci Rep 7(1):9968. https://doi.org/10.1038/s41598-017-07442-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jamain S, Radyushkin K, Hammerschmidt K, Granon S, Boretius S, Varoqueaux F (2008) Reduced social interaction and ultrasonic communication in a mouse model of monogenic heritable autism. Proc Natl Acad Sci U S A 105(5):1710–1715. https://doi.org/10.1073/pnas.0711555105

    Article  PubMed  PubMed Central  Google Scholar 

  68. Leo D, Gainetdinov RR (2013) Transgenic mouse models for ADHD. Cell Tissue Res 354(1):259–271. https://doi.org/10.1007/s00441-013-1639-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. McFarlane HG, Kusek GK, Yang M, Phoenix JL, Bolivar VJ, Crawley JN (2008) Autism-like behavioral phenotypes in BTBR T+ tf/J mice. Genes Brain Behav 7(2):152–163. https://doi.org/10.1111/j.1601-183X.2007.00330.x

    Article  CAS  PubMed  Google Scholar 

  70. Murakami Y, Imamura Y, Saito K, Sakai D, Motyama J (2019) Altered kynurenine pathway metabolites in a mouse model of human attention-deficit hyperactivity/autism spectrum disorders: a potential new biological diagnostic marker. Sci Rep 9(1):13182. https://doi.org/10.1038/s41598-019-49781-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Boekhoudt L, Omrani A, Mieneke CM, Luijendijk IG, Wolterink-Donselaar EC et al (2016) Chemogenetic activation of dopamine neurons in the ventral tegmental area, but not substantia nigra, induces hyperactivity in rats. Eur Neuropsychopharmacol 26(11):1784–1793. https://doi.org/10.1016/j.euroneuro.2016.09.003

    Article  CAS  PubMed  Google Scholar 

  72. Chen P, Hong W (2018) Neural circuit mechanisms of social behavior. Neuron 98(1):16–30. https://doi.org/10.1016/j.neuron.2018.02.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Damiano CR, Aloi J, Dunlap K, Burrus CJ, Mosner MG, Kozink RV, McLaurin R, Mullette-Gillman O’DA et al (2014) Association between the oxytocin receptor (OXTR) gene and mesolimbic responses to rewards. Mol Autism 5:7. https://doi.org/10.1186/2040-2392-5-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Insel TR (2003) Is social attachment an addictive disorder? Physiol Behav 79(3):351–357. https://doi.org/10.1016/s0031-9384(03)00148-3

    Article  CAS  PubMed  Google Scholar 

  75. Moy SS, Nadler JJ, Perez A, Barbaro RP, Johns JM, Magnuson TR, Piven J, Crawley JN (2004) Sociability and preference for social novelty in five inbred strains: an approach to assess autistic-like behavior in mice. Genes Brain Behav 3(5):287–302. https://doi.org/10.1111/j.1601-1848.2004.00076.x

    Article  CAS  PubMed  Google Scholar 

  76. Young LJ, Barrett CE (2015) Neuroscience. Can oxytocin treat autism? Science 347(6224):825–826. https://doi.org/10.1126/science.aaa8120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Freestone PS, Chung KK, Guatteo E, Mercuri NB, Nicholson LF, Lipski J (2009) Acute action of rotenone on nigral dopaminergic neurons--involvement of reactive oxygen species and disruption of Ca2+ homeostasis. Eur J Neurosci 30(10):1849–1859. https://doi.org/10.1111/j.1460-9568.2009.06990.x

    Article  PubMed  Google Scholar 

  78. Nie S, Ma K, Sun M, Lee M, Tan Y, Chen G, et al (2019) 7,8-Dihydroxyflavone protects nigrostriatal dopaminergic neurons from rotenone-induced neurotoxicity in rodents. Parkinsons Dis 9193534. https://doi.org/10.1155/2019/9193534

  79. Clouston TS (1891) The neuroses of development: being the Morison lectures for 1890. Edinb Med J 37(2):104–124

    PubMed Central  Google Scholar 

  80. Inui T, Kumagaya S, Myowa-Yamakoshi M (2017) Neurodevelopmental hypothesis about the etiology of autism spectrum disorders. Front Hum Neurosci 11:354. https://doi.org/10.3389/fnhum.2017.00354

    Article  PubMed  PubMed Central  Google Scholar 

  81. Owen MJ, O’Donovan MC (2007) Schizophrenia and the neurodevelopmental continuum: evidence from genomics. World Psychiatry 16(3):227–235. https://doi.org/10.1002/wps.20440

    Article  Google Scholar 

  82. Satterstrom FK, Kosmicki JA, Wang J, Breen MS, De Rubeis S, An JY et al (2020) Large-Scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell S0092-8674(19):31398–31394. https://doi.org/10.1016/j.cell.2019.12.036

    Article  CAS  Google Scholar 

  83. Schmidt-Kastner R, van Os J, Steinbusch WMH, Schmitz C (2006) Gene regulation by hypoxia and the neurodevelopmental origin of schizophrenia. Schizophr Res 84(2-3):253–271. https://doi.org/10.1016/j.schres.2006.02.022

    Article  PubMed  Google Scholar 

  84. Stromland K, Nordin V, Miller M, Akerström B, Gillberg C (1994) Autism in thalidomide embryopathy: a population study. Dev Med Child Neurol 36(4):351–356. https://doi.org/10.1111/j.1469-8749.1994.tb11856.x

    Article  CAS  PubMed  Google Scholar 

  85. Ge X, Hua H, Wang P, Liu J, Zhang Y, Ding G, Zhu C, Huang S et al (2019) Inhibition of mitochondrial complex I by rotenone protects against acetaminophen-induced liver injury. Am J Transl Res 11(1):188–198

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Heinz S, Freyberger A, Lawrenz B, Schladt L, Schmuck G, Ellinger-Ziegelbauer H (2017) Mechanistic investigations of the mitochondrial complex I inhibitor rotenone in the context of pharmacological and safety evaluation. Sci Rep 7:45465. https://doi.org/10.1038/srep45465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Palmer G, Horgan DJ, Tisdale H, Singer TP, Beinert H (1968) Studies on the respiratory chain-linked reduced nicotinamide adenine dinucleotide dehydrogenase. XIV. Location of the sites of inhibition of rotenone, barbiturates, and piericidin by means of electron paramagnetic resonance spectroscopy. J Biol Chem 243:844–847

    Article  CAS  PubMed  Google Scholar 

  88. Sled VD, Vinogradov AD (1993) Kinetics of the mitochondrial NADH-ubiquinone oxidoreductase interaction with hexammineruthenium (III). Biochim Biophys Acta 1141(2-3):262–268. https://doi.org/10.1016/0005-2728(93)90051-g

    Article  CAS  PubMed  Google Scholar 

  89. Carlezon WA Jr, Duman RS, Nestler EJ (2005) The many faces of CREB. Trends Neurosci 28(8):436–445. https://doi.org/10.1016/j.tins.2005.06.005

    Article  CAS  PubMed  Google Scholar 

  90. Mäkelä J, Tselykh TV, Kukkonen JP, Eriksson O, Korhonen LT, Lindholm D (2016) Peroxisome proliferator-activated receptor-γ (PPARγ) agonist is neuroprotective and stimulates PGC-1α expression and CREB phosphorylation in human dopaminergic neurons. Neuropharm 102:266–275. https://doi.org/10.1016/j.neuropharm.2015.11.020

    Article  CAS  Google Scholar 

  91. Hussain MA, Porras DL, Rowe MH, West JR, Song WJ, Schreiber WE et al (2006) Increased pancreatic -cell proliferation mediated by CREB binding protein gene activation. Mol Cell Biol 26(20):7747–7759. https://doi.org/10.1128/mcB.02353-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Usukura J, Nishizawa Y, Shimomura A, Kobayashi K, Nagatsu T, Hagiwara M (2000) Direct imaging of phosphorylation-dependent conformational change and DNA binding of CREB by electron microscopy. Genes Cells 5(6):515–522. https://doi.org/10.1046/j.1365-2443.2000.00345.x

    Article  CAS  PubMed  Google Scholar 

  93. Herzig S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A et al (2001) CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 413(6852):179–183. https://doi.org/10.1038/35093131 Erratum in: Nature 413(6856):652

    Article  CAS  PubMed  Google Scholar 

  94. Chowanadisai W, Bauerly KA, Tchaparian E, Wong A, Cortopassi GA, Rucker RB (2010) Pyrroloquinoline quinone stimulates mitochondrial biogenesis through cAMP response element-binding protein phosphorylation and increased PGC-1alpha expression. J Biol Chem 285(1):142–152. https://doi.org/10.1074/jbc.M109.030130

    Article  CAS  PubMed  Google Scholar 

  95. Bilge SS, Günaydin C, Önger ME, Bozkurt A, Avci B (2020) Neuroprotective action of agmatine in rotenone-induced model of Parkinson's disease: Role of BDNF/cREB and ERK pathway. Behav Brain Res 392:112692. https://doi.org/10.1016/j.bbr.2020.112692

    Article  CAS  PubMed  Google Scholar 

  96. Xia N, Zhang Q, Wang ST, Gu L, Yang HM, Liu L, Bakshi R, Yang H et al (2015) Blockade of metabotropic glutamate receptor 5 protects against DNA damage in a rotenone-induced Parkinson's disease model. Free Radic Biol Med 89:567–580. https://doi.org/10.1016/j.freeradbiomed.2015.09.017

    Article  CAS  PubMed  Google Scholar 

  97. Vaarmann A, Mandel M, Zeb A, Wareski P, Liiv J, Kuum M, Antsov E, Liiv M et al (2016) Mitochondrial biogenesis is required for axonal growth. Development 143(11):1981–1992. https://doi.org/10.1242/dev.128926

    Article  CAS  PubMed  Google Scholar 

  98. Sidlauskaite E, Gibson JW, Megson IL, Whitfield PD, Tovmasyan A, Batinic-Haberle I et al (2018) Assembly of mammalian oxidative phosphorylation complexes I-V and supercomplexes. Essays Biochem 62(3):255–270. https://doi.org/10.1042/EBC20170098

    Article  Google Scholar 

  99. Tang J, Oliveros A, Jang MH (2019) Dysfunctional mitochondrial bioenergetics and synaptic degeneration in Alzheimer disease. Int Neurourol J 23(Suppl 1):S5–S10. https://doi.org/10.5213/inj.1938036.018

    Article  PubMed  PubMed Central  Google Scholar 

  100. Evans MJ, Scarpulla RC (1990) NRF-1: A trans-activator of nuclear-encoded respiratory genes in animal cells. Genes Dev 4:1023–1034. https://doi.org/10.1101/gad.4.6.1023

    Article  CAS  PubMed  Google Scholar 

  101. Reyes A, Mezzina M, Gadaleta G (2002) Human mitochondrial transcription factor A (mtTFA): Gene structure and characterization of related pseudogenes. Gene 291:223–232. https://doi.org/10.1016/s0378-1119(02)00600-5

    Article  CAS  PubMed  Google Scholar 

  102. Peng K, Tao Y, Zhang J, Wang J, Ye F, Dan G, Zhao Y, Cai Y et al (2016) Resveratrol regulates mitochondrial biogenesis and fission/fusion to attenuate rotenone-induced neurotoxicity. Oxidative Med Cell Longev 2016:6705621–6705612. https://doi.org/10.1155/2016/6705621

    Article  CAS  Google Scholar 

  103. Peng K, Hu J, Xiao J, Dan G, Yang L, Ye F et al (2018) Mitochondrial ATP-sensitive potassium channel regulates mitochondrial dynamics to participate in neurodegeneration of Parkinson’s disease. Biochim Biophys Acta Mol basis Dis 864(4 Pt A):1086–1103. https://doi.org/10.1016/j.bbadis.2018.01.013

    Article  CAS  Google Scholar 

  104. Ishii T, Itoh K, Takahashi S, Sato H, Yanagawa T, Katoh Y, Bannai S, Yamamoto M (2000) Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J Biol Chem 275(21):16023–16029. https://doi.org/10.1074/jbc.275.21.16023

    Article  CAS  PubMed  Google Scholar 

  105. Liu T, Knowlton AA (2016) Repetitive ROS injury leads to inactivation of NRF2- induced antioxidant defense and mitochondrial dysfunction in ischemic heart failure. FASEB J 30(suppl):958.5–958.5

    Google Scholar 

  106. Morales Pantoja IE, Hu CL, Perrone-Bizzozero NI, Zheng J, Bizzozero AO (2016) Nrf2-dysregulation correlates with reduced synthesis and low glutathione levels in experimental autoimmune encephalomyelitis. J Neurochem 139(4):640–650. https://doi.org/10.1111/jnc.13837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pistollato F, Canovas-Jorda D, Zagoura D, Bal-Price A (2017) Nrf2 pathway activation upon rotenone treatment in human iPSC-derived neural stem cells undergoing differentiation towards neurons and astrocytes. Neurochem Int 108:457–471. https://doi.org/10.1016/j.neuint.2017.06.006

    Article  CAS  PubMed  Google Scholar 

  108. Zagoura D, Jorda D, Pistollato F, Bremer-Hoffmann S, Bal-Price A (2017) Evaluation of the rotenone-induced activation of the NFE2L2 pathway in a neuronal model derived from human induced pluripotent stem cells. Neurochem Int 106:62–73. https://doi.org/10.1016/j.neuint.2016.09.004

    Article  CAS  PubMed  Google Scholar 

  109. Turcotte ML, Parliament M, Franko A, Allalunis-Turner J (2002) Variation in mitochondrial function in hypoxia-sensitive and hypoxia-tolerant human glioma cells. Br J Cancer 86:619–624. https://doi.org/10.1038/sj.bjc.6600087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cabezas R, Vega-Vela NE, González-Sanmiguel J, González J, Esquinas P, Echeverria V, Barreto GE (2018) PDGF-BB preserves mitochondrial morphology, attenuates ROS production, and upregulates neuroglobin in an astrocytic model under rotenone insult. Mol Neurobiol 55(4):3085–3095. https://doi.org/10.1007/s12035-017-0567-6

    Article  CAS  PubMed  Google Scholar 

  111. Palle S, Neerati P (2018) Improved neuroprotective effect of resveratrol nanoparticles as evinced by abrogation of rotenone-induced behavioral deficits and oxidative and mitochondrial dysfunctions in rat model of Parkinson’s disease. Naunyn Schmiedeberg's Arch Pharmacol 391(4):445–453. https://doi.org/10.1007/s00210-018-1474-8

    Article  CAS  Google Scholar 

  112. Valdez LB, Zaobornyj T, Bandez MJ, López-Cepero JM, Boveris A, Navarro A (2019) Complex I syndrome in striatum and frontal cortex in a rat model of Parkinson disease. Free Radic Biol Med 135:274–282. https://doi.org/10.1016/j.freeradbiomed.2019.03.001

    Article  CAS  PubMed  Google Scholar 

  113. Han G, Casson RJ, Chidlow G, Wood JP (2014) The mitochondrial complex I inhibitor rotenone induces endoplasmic reticulum stress and activation of GSK-3β in cultured rat retinal cells. Invest Ophthalmol Vis Sci 55(9):5616–5628. https://doi.org/10.1167/iovs.14-14371

    Article  CAS  PubMed  Google Scholar 

  114. Li N, Ragheb K, Lawler G, Sturgis J, Rajwa B, Melendez JA, Robinson JP (2003) Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem 278(10):8516–8525. https://doi.org/10.1074/jbc.M210432200

    Article  CAS  PubMed  Google Scholar 

  115. Martella G, Madeo G, Maltese M, Vanni V, Puglisi F, Ferraro E, Schirinzi T, Valente EM et al (2016) Exposure to low-dose rotenone precipitates synaptic plasticity alterations in PINK1 heterogygous knockout mice. Neurobiol Dis 91:21–36. https://doi.org/10.1016/j.nbd.2015.12.020

    Article  CAS  PubMed  Google Scholar 

  116. Villeneuve L, Tiede LM, Morsey B, Fox HS (2013) Quantitative proteomics reveals oxygen-dependent changes in neuronal mitochondria affecting function and sensitivity to rotenone. J Proteome Res 12(10):4599–4606. https://doi.org/10.1021/pr400758d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bao L, Avshalumov MV, Rice ME (2005) Partial mitochondrial inhibition causes striatal dopamine release suppression and medium spiny neuron depolarization via H2O2 elevation, not ATP depletion. J Neurosci 25(43):10029–10040. https://doi.org/10.1523/JNEUROSCI.2652-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Serrano-García N, Fernández-Valverde F, Luis-Garcia ER, Granados-Rojas L, Juárez-Zepeda TE, Orozco-Suárez SA, Pedraza-Chaverri J, Orozco-Ibarra M et al (2018) Docosahexaenoic acid protection in a rotenone induced Parkinson’s model: prevention of tubulin and synaptophysin loss, but no association with mitochondrial function. Neurochem Int 121:26–37. https://doi.org/10.1016/j.neuint.2018.10.015

    Article  CAS  PubMed  Google Scholar 

  119. Cho K-O, Hunt CA, Kennedy MB (1992) The rat brain postsynaptic density fraction contains a homolog of the drosophila discs-large tumor suppressor protein. Neuron 9:929–942. https://doi.org/10.1016/0896-6273(92)90245-9

    Article  CAS  PubMed  Google Scholar 

  120. Feng Y, Crosbie J, Wigg K, Pathare T, Ickowicz A, Schachar R, Tannock R, Roberts W et al (2005) The SNAP25 gene as a susceptibility gene contributing to attention-deficit hyperactivity disorder. Mol Psychiatry 10(11):998–1005, 973. https://doi.org/10.1038/sj.mp.4001722

    Article  CAS  PubMed  Google Scholar 

  121. Wilson MC (2000) Coloboma mouse mutant as an animal model of hyperkinesis and attention deficit hyperactivity disorder. Neurosci Biobehav Ver 24(1):51–57. https://doi.org/10.1016/s0149-7634(99)00064-0

    Article  CAS  Google Scholar 

  122. Hutsler JJ, Zhang H (2010) Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res 1309:83–94. https://doi.org/10.1016/j.brainres.2009.09.120

    Article  CAS  PubMed  Google Scholar 

  123. Xing J, Kimura H, Wang C, Ishizuka K, Kushima I, Arioka Y, Yoshimi A, Nakamura Y et al (2016) Resequencing and Association Analysis of Six PSD-95-Related Genes as Possible Susceptibility Genes for Schizophrenia and Autism Spectrum Disorders. Sci Rep 6:27491. https://doi.org/10.1038/srep27491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Catts VS, Derminio DS, Hahn CG, Weickert CS (2015) Postsynaptic density levels of the NMDA receptor NR1 subunit and PSD-95 protein in prefrontal cortex from people with schizophrenia. NPJ Schizophr 1:15037. https://doi.org/10.1038/npjschz.2015.37

    Article  PubMed  PubMed Central  Google Scholar 

  125. Coley AA, Gao WJ (2018) PSD95: A synaptic protein implicated in schizophrenia or autism? Prog Neuro-Psychopharmacol Biol Psychiatry 82:187–194. https://doi.org/10.1016/j.pnpbp.2017.11.016

    Article  CAS  Google Scholar 

  126. Maximov A, Tang J, Yang X, Pang ZP, Südhof TC (2009) Complexin Controls the Force Transfer from SNARE Complexes to Membranes in Fusion. Science 323(5913):516–521. https://doi.org/10.1126/science.1166505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Funke L, Dakoji S, Bredt DS (2005) Membrane-associated guanylate kinases regulate adhesion and plasticity at cell junctions. Annu Rev Biochem 74:219–245. https://doi.org/10.1146/annurev.biochem.74.082803.133339

    Article  CAS  PubMed  Google Scholar 

  128. Calhoun ME, Jucker M, Martin LJ, Thinakaran G, Price DL, Mouton PR (1996) Comparative evaluation of synaptophysin-based methods for quantification of synapses. J Neurocytol 25(12):821–828. https://doi.org/10.1007/bf02284844

    Article  CAS  PubMed  Google Scholar 

  129. Doktór B, Damulewicz M, Pyza E (2019) Overexpression of mitochondrial ligases reverses rotenone-induced effects in a drosophila model of Parkinson’s disease. Front Neurosci 13:94. https://doi.org/10.3389/fnins.2019.00094

    Article  PubMed  PubMed Central  Google Scholar 

  130. Borland MK, Trimmer PA, Rubinstein JD, Keeney PM, Mohanakumar K, Liu L, Bennett JP Jr (2008) Chronic, low-dose rotenone reproduces Lewy neurites found in early stages of Parkinson’s disease, reduces mitochondrial movement and slowly kills differentiated SH-SY5Y neural cells. Mol Neurodegener 3:21. https://doi.org/10.1186/1750-1326-3-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ren Y, Liu W, Jiang H, Jiang Q, Feng J (2005) Selective vulnerability of dopaminergic neurons to microtubule depolymerization. J Biol Chem 280(40):34105–34112. https://doi.org/10.1074/jbc.M503483200

  132. Klein ME, Lioy DT, Ma L, Impey S, Mandel G, Goodman RH (2007) Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA. Nat Neurosci 10(12):1513–1514. https://doi.org/10.1038/nn2010

    Article  CAS  PubMed  Google Scholar 

  133. Lietz M, Hohl M, Thiel G (2003) RE-1 silencing transcription factor (REST) regulates human synaptophysin gene transcription through an intronic sequence-specific DNA-binding site. Eur J Biochem 270(1):2–9. https://doi.org/10.1046/j.1432-1033.2003.03360.x

    Article  CAS  PubMed  Google Scholar 

  134. Wu J, Xie X (2006) Comparative sequence analysis reveals an intricate network among REST, CREB and miRNA in mediating neuronal gene expression. Genome Biol 7(9):R85. https://doi.org/10.1186/gb-2006-7-9-r85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Bisbal M, Sanchez M (2019) Neurotoxicity of the pesticide rotenone on neuronal polarization: a mechanistic approach. Neural Regen Res 14(5):762–766. https://doi.org/10.4103/1673-5374.249847

    Article  PubMed  PubMed Central  Google Scholar 

  136. Marshall LE, Himes RH (1978) Rotenone inhibition of tubulin self-assembly. Biochem Biophys Acta 543(4):590–594. https://doi.org/10.1016/0304-4165(78)90315-x

    Article  CAS  PubMed  Google Scholar 

  137. Telford JE, Kilbride SM, Davey GP (2009) Complex I is rate-limiting for oxygen consumption in the nerve terminal. J Biol Chem 284:9109–9114. https://doi.org/10.1074/jbc.M809101200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Arnold B, Cassady SJ, VanLaar VS, Berman SB (2011) Integrating multiple aspects of mitochondrial dynamics in neurons: age-related differences and dynamic changes in a chronic rotenone model. Neurobiol Dis 41(1):189–200. https://doi.org/10.1016/j.nbd.2010.09.006

    Article  CAS  PubMed  Google Scholar 

  139. Pamies D, Block K, Lau P, Gribaldo L, Pardo CA, Barreras P, Smirnova L, Wiersma D et al (2018) Rotenone exerts developmental neurotoxicity in a human brain spheroid model. Toxicol Appl Pharmacol 354:101–114. https://doi.org/10.1016/j.taap.2018.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Yuyun X, Jinjun Q, Minfang X, Jing Q, Juan X, Rui M et al (2012) Effects of Low Concentrations of Rotenone upon Mitohormesis in SH-SY5Y Cells. Dose-Response 11(2):270–280. https://doi.org/10.2203/dose-response.12-005

    Article  PubMed  PubMed Central  Google Scholar 

  141. Zaitone SA, Abo-Elmatty DM, Shaalan AA (2012) Acetyl-L-carnitine and α-lipoic acid affect rotenone-induced damage in nigral dopaminergic neurons of rat brain, implication for Parkinson's disease therapy. Pharmacol Biochem Behav 100(3):347–360. https://doi.org/10.1016/j.pbb.2011.09.002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Dr. Fabio Cardoso Cruz from the Pharmacology Department at Federal University of São Paulo (UNIFESP), for letting us use passive avoidance apparatus. We also thank the staff of the animal facilities for excellent animal care and the technicians for the support.

The Integrity of Research and Reporting

All experimental procedures, as mentioned previously, were done in accordance with the ethical principles for the use of laboratory animals.

Funding

This work was supported by São Paulo Research Foundation (FAPESP) (ref. 2015/02041-1) and Fundação de Amparo à Pesquisa of Santa Casa de São Paulo School of Medical Science (FCMSCSP) (2015–2016). AS was supported by PROSUC/CAPES, JMCY was an undergraduate student, ACR is under PhD FAPESP fellowship (2015/268200), MDB was supported by CAPES and FAPESP/Master (2016/12039-7), and EH is supported by Master CAPES fellowship.

Author information

Authors and Affiliations

Authors

Contributions

AS performed all experiments regarding mitochondrial function (functional experiments, western blot and qPCR) and behavioral tests, in addition to the analysis and the statistics. AS also wrote this manuscript. JMCY contributed to oxygen consumption experiments. JMCY, EH, and ACR performed behavioral tests. MDB contributed with qPCR experiments. MBC assisted in the discussion and statistics. TRR designed the study, wrote the protocols, revised the manuscript, and wrote the final version of it.

Corresponding author

Correspondence to Tatiana Rosado Rosenstock.

Ethics declarations

Consent for Publication

All authors approved the final version of the manuscript and consent for its publication.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

Neonatal rotenone exposure induces psychiatric-like phenotype in adulthood

Neonatal rotenone decreases mitochondrial biogenesis in adult animals

Rotenone in neonates diminishes Nrf1 expression in P60 and P120 rats

Neonatal rotenone prompts acute NFE2L2 activation in cortex

Rotenone in neonates changes synaptic proteins in adulthood

Supplementary Information

ESM 1

(PDF 2150 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siena, A., Yuzawa, J.M.C., Ramos, A.C. et al. Neonatal Rotenone Administration Induces Psychiatric Disorder-Like Behavior and Changes in Mitochondrial Biogenesis and Synaptic Proteins in Adulthood. Mol Neurobiol 58, 3015–3030 (2021). https://doi.org/10.1007/s12035-021-02317-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02317-w

Keywords

Navigation